Cargando…
Molecular optimization by capturing chemist’s intuition using deep neural networks
A main challenge in drug discovery is finding molecules with a desirable balance of multiple properties. Here, we focus on the task of molecular optimization, where the goal is to optimize a given starting molecule towards desirable properties. This task can be framed as a machine translation proble...
Autores principales: | He, Jiazhen, You, Huifang, Sandström, Emil, Nittinger, Eva, Bjerrum, Esben Jannik, Tyrchan, Christian, Czechtizky, Werngard, Engkvist, Ola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7980633/ https://www.ncbi.nlm.nih.gov/pubmed/33743817 http://dx.doi.org/10.1186/s13321-021-00497-0 |
Ejemplares similares
-
Transformer-based molecular optimization beyond matched molecular pairs
por: He, Jiazhen, et al.
Publicado: (2022) -
SMILES-based deep generative scaffold decorator for de-novo drug design
por: Arús-Pous, Josep, et al.
Publicado: (2020) -
Implications of
Additivity and Nonadditivity for Machine
Learning and Deep Learning Models in Drug Design
por: Kwapien, Karolina, et al.
Publicado: (2022) -
Randomized SMILES strings improve the quality of molecular generative models
por: Arús-Pous, Josep, et al.
Publicado: (2019) -
Similarity-based pairing improves efficiency of siamese neural networks for regression tasks and uncertainty quantification
por: Zhang, Yumeng, et al.
Publicado: (2023)