Cargando…
Is the scalar property of interval timing preserved after hippocampus lesions?
Time perception is fundamental for decision-making, adaptation, and survival. In the peak-interval (PI) paradigm, one of the critical features of time perception is its scale invariance, i.e., the error in time estimation increases linearly with the to-be-timed interval. Brain lesions can profoundly...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7980776/ https://www.ncbi.nlm.nih.gov/pubmed/33508325 http://dx.doi.org/10.1016/j.jtbi.2021.110605 |
Sumario: | Time perception is fundamental for decision-making, adaptation, and survival. In the peak-interval (PI) paradigm, one of the critical features of time perception is its scale invariance, i.e., the error in time estimation increases linearly with the to-be-timed interval. Brain lesions can profoundly alter time perception, but do they also change its scalar property? In particular, hippocampus (HPC) lesions affect the memory of the reinforced durations. Experiments found that ventral hippocampus (vHPC) lesions shift the perceived durations to longer values while dorsal hippocampus (dHPC) lesions produce opposite effects. Here we used our implementation of the Striatal Beat Frequency (SBFML) model with biophysically realistic Morris-Lecar (ML) model neurons and a topological map of HPC memory to predict analytically and verify numerically the effect of HPC lesions on scalar property. We found that scalar property still holds after both vHPC and dHPC lesions in our SBFML-HPC network simulation. Our numerical results show that PI durations are shifted in the correct direction and match the experimental results. In our simulations, the relative peak shift of the behavioral response curve is controlled by two factors: (1) the lesion size, and (2) the cellular-level memory variance of the temporal durations stored in the HPC. The coefficient of variance (CV) of the behavioral response curve remained constant over the tested durations of PI procedure, which suggests that scalar property is not affected by HPC lesions. |
---|