Cargando…
Interrupted incubation: How dabbling ducks respond when flushed from the nest
Nesting birds must provide a thermal environment sufficient for egg development while also meeting self‐maintenance needs. Many birds, particularly those with uniparental incubation, achieve this balance through periodic incubation recesses, during which foraging and other self‐maintenance activitie...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7981198/ https://www.ncbi.nlm.nih.gov/pubmed/33767842 http://dx.doi.org/10.1002/ece3.7245 |
_version_ | 1783667510671835136 |
---|---|
author | Croston, Rebecca Hartman, C. Alex Herzog, Mark P. Peterson, Sarah H. Kohl, Jeffrey D. Overton, Cory T. Feldheim, Cliff L. Casazza, Michael L. Ackerman, Joshua T. |
author_facet | Croston, Rebecca Hartman, C. Alex Herzog, Mark P. Peterson, Sarah H. Kohl, Jeffrey D. Overton, Cory T. Feldheim, Cliff L. Casazza, Michael L. Ackerman, Joshua T. |
author_sort | Croston, Rebecca |
collection | PubMed |
description | Nesting birds must provide a thermal environment sufficient for egg development while also meeting self‐maintenance needs. Many birds, particularly those with uniparental incubation, achieve this balance through periodic incubation recesses, during which foraging and other self‐maintenance activities can occur. However, incubating birds may experience disturbances such as predator or human activity which interrupt natural incubation patterns by compelling them to leave the nest. We characterized incubating mallard Anas platyrhynchos and gadwall Mareca strepera hens’ responses when flushed by predators and investigators in Suisun Marsh, California, USA. Diurnal incubation recesses initiated by investigators approaching nests were 63% longer than natural diurnal incubation recesses initiated by the hen (geometric mean: 226.77 min versus 142.04 min). Nocturnal incubation recesses, many of which were likely the result of predators flushing hens, were of similar duration regardless of whether the nest was partially depredated during the event (115.33 [101.01;131.68] minutes) or not (119.62 [111.96;127.82] minutes), yet were 16% shorter than natural diurnal incubation recesses. Hens moved further from the nest during natural diurnal recesses or investigator‐initiated recesses than during nocturnal recesses, and the proportion of hen locations recorded in wetland versus upland habitat during recesses varied with recess type (model‐predicted means: natural diurnal recess 0.77; investigator‐initiated recess 0.82; nocturnal recess 0.31). Hens were more likely to take a natural recess following an investigator‐initiated recess earlier that same day than following a natural recess earlier that same day, and natural recesses that followed an investigator‐initiated recess were longer than natural recesses that followed an earlier natural recess, suggesting that hens may not fulfill all of their physiological needs during investigator‐initiated recesses. We found no evidence that the duration of investigator‐initiated recesses was influenced by repeated visits to the nest, whether by predators or by investigators, and trapping and handling the hen did not affect investigator‐initiated recess duration unless the hen was also fitted with a backpack‐harness style GPS–GSM transmitter at the time of capture. Hens that were captured and fitted with GPS–GSM transmitters took recesses that were 26% longer than recesses during which a hen was captured but a GPS–GSM transmitter was not attached. Incubation interruptions had measurable but limited and specific effects on hen behavior. |
format | Online Article Text |
id | pubmed-7981198 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79811982021-03-24 Interrupted incubation: How dabbling ducks respond when flushed from the nest Croston, Rebecca Hartman, C. Alex Herzog, Mark P. Peterson, Sarah H. Kohl, Jeffrey D. Overton, Cory T. Feldheim, Cliff L. Casazza, Michael L. Ackerman, Joshua T. Ecol Evol Original Research Nesting birds must provide a thermal environment sufficient for egg development while also meeting self‐maintenance needs. Many birds, particularly those with uniparental incubation, achieve this balance through periodic incubation recesses, during which foraging and other self‐maintenance activities can occur. However, incubating birds may experience disturbances such as predator or human activity which interrupt natural incubation patterns by compelling them to leave the nest. We characterized incubating mallard Anas platyrhynchos and gadwall Mareca strepera hens’ responses when flushed by predators and investigators in Suisun Marsh, California, USA. Diurnal incubation recesses initiated by investigators approaching nests were 63% longer than natural diurnal incubation recesses initiated by the hen (geometric mean: 226.77 min versus 142.04 min). Nocturnal incubation recesses, many of which were likely the result of predators flushing hens, were of similar duration regardless of whether the nest was partially depredated during the event (115.33 [101.01;131.68] minutes) or not (119.62 [111.96;127.82] minutes), yet were 16% shorter than natural diurnal incubation recesses. Hens moved further from the nest during natural diurnal recesses or investigator‐initiated recesses than during nocturnal recesses, and the proportion of hen locations recorded in wetland versus upland habitat during recesses varied with recess type (model‐predicted means: natural diurnal recess 0.77; investigator‐initiated recess 0.82; nocturnal recess 0.31). Hens were more likely to take a natural recess following an investigator‐initiated recess earlier that same day than following a natural recess earlier that same day, and natural recesses that followed an investigator‐initiated recess were longer than natural recesses that followed an earlier natural recess, suggesting that hens may not fulfill all of their physiological needs during investigator‐initiated recesses. We found no evidence that the duration of investigator‐initiated recesses was influenced by repeated visits to the nest, whether by predators or by investigators, and trapping and handling the hen did not affect investigator‐initiated recess duration unless the hen was also fitted with a backpack‐harness style GPS–GSM transmitter at the time of capture. Hens that were captured and fitted with GPS–GSM transmitters took recesses that were 26% longer than recesses during which a hen was captured but a GPS–GSM transmitter was not attached. Incubation interruptions had measurable but limited and specific effects on hen behavior. John Wiley and Sons Inc. 2021-02-23 /pmc/articles/PMC7981198/ /pubmed/33767842 http://dx.doi.org/10.1002/ece3.7245 Text en © 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This article is a U.S. Government work and is in the public domain in the USA This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Croston, Rebecca Hartman, C. Alex Herzog, Mark P. Peterson, Sarah H. Kohl, Jeffrey D. Overton, Cory T. Feldheim, Cliff L. Casazza, Michael L. Ackerman, Joshua T. Interrupted incubation: How dabbling ducks respond when flushed from the nest |
title | Interrupted incubation: How dabbling ducks respond when flushed from the nest |
title_full | Interrupted incubation: How dabbling ducks respond when flushed from the nest |
title_fullStr | Interrupted incubation: How dabbling ducks respond when flushed from the nest |
title_full_unstemmed | Interrupted incubation: How dabbling ducks respond when flushed from the nest |
title_short | Interrupted incubation: How dabbling ducks respond when flushed from the nest |
title_sort | interrupted incubation: how dabbling ducks respond when flushed from the nest |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7981198/ https://www.ncbi.nlm.nih.gov/pubmed/33767842 http://dx.doi.org/10.1002/ece3.7245 |
work_keys_str_mv | AT crostonrebecca interruptedincubationhowdabblingducksrespondwhenflushedfromthenest AT hartmancalex interruptedincubationhowdabblingducksrespondwhenflushedfromthenest AT herzogmarkp interruptedincubationhowdabblingducksrespondwhenflushedfromthenest AT petersonsarahh interruptedincubationhowdabblingducksrespondwhenflushedfromthenest AT kohljeffreyd interruptedincubationhowdabblingducksrespondwhenflushedfromthenest AT overtoncoryt interruptedincubationhowdabblingducksrespondwhenflushedfromthenest AT feldheimcliffl interruptedincubationhowdabblingducksrespondwhenflushedfromthenest AT casazzamichaell interruptedincubationhowdabblingducksrespondwhenflushedfromthenest AT ackermanjoshuat interruptedincubationhowdabblingducksrespondwhenflushedfromthenest |