Cargando…
Population connectivity, dispersal, and swimming behavior in Daphnia
The water flea Daphnia has the capacity to respond rapidly to environmental stressors, to disperse over large geographical scales, and to preserve its genetic material by forming egg banks in the sediment. Spatial and temporal distributions of D. magna have been extensively studied over the last dec...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7981204/ https://www.ncbi.nlm.nih.gov/pubmed/33767843 http://dx.doi.org/10.1002/ece3.7246 |
Sumario: | The water flea Daphnia has the capacity to respond rapidly to environmental stressors, to disperse over large geographical scales, and to preserve its genetic material by forming egg banks in the sediment. Spatial and temporal distributions of D. magna have been extensively studied over the last decades using behavioral or genetic tools, although the correlation between the two has rarely been the focus. In the present study, we therefore investigated the population genetic structure and behavioral response to a lethal threat, ultraviolet radiation (UVR), among individuals from two different water bodies. Our results show two genetic populations with moderate gene flow, highly correlated with geographical location and with inheritable traits through generations. However, despite the strong genetic differences between populations, we show homogeneous refuge demand between populations when exposed to the lethal threat solar UVR. |
---|