Cargando…

Computerized virtual surgery based on computational fluid dynamics simulation for planning coronary revascularization with aortic root replacement in adult congenital heart disease: a case report

A 38-year-old woman presented with exertional dyspnea and chest compression. She had undergone repair of congenital supravalvular aortic stenosis at 8 years of age. Contrast-enhanced computed tomography showed re-stenosis in the ascending aorta, bilateral coronary arterial aneurysm, and a highly thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hohri, Yu, Itatani, Keiichi, Yamazaki, Sachiko, Yaku, Hitoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Singapore 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7981308/
https://www.ncbi.nlm.nih.gov/pubmed/33130943
http://dx.doi.org/10.1007/s11748-020-01517-w
Descripción
Sumario:A 38-year-old woman presented with exertional dyspnea and chest compression. She had undergone repair of congenital supravalvular aortic stenosis at 8 years of age. Contrast-enhanced computed tomography showed re-stenosis in the ascending aorta, bilateral coronary arterial aneurysm, and a highly thickened left ventricular wall. Release of stenosis was necessary to avoid left ventricular functional deterioration; however, it could cause demand–supply mismatch in coronary flow due to substantial left ventricular hypertrophy. Sufficient statistical evidence was not available in this situation; therefore, computerized virtual surgery based on computational fluid dynamics (CFD) was performed to predict the postoperative hemodynamics. Consequently, root replacement with in situ Carrel patch coronary reconstruction was considered a better option than coronary artery graft bypass in the left-side coronary flow supply. The patient underwent root replacement with in situ Carrel patch coronary reconstruction as planned based on CFD without any complication and was discharged 15 days postoperatively.