Cargando…
Status of mannose-binding lectin (MBL) and complement system in COVID-19 patients and therapeutic applications of antiviral plant MBLs
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a virus called “Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).” In the majority of patients, infection with COVID-19 may be asymptomatic or may cause only mild symptoms. However, in some patients, there can also be...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7981598/ https://www.ncbi.nlm.nih.gov/pubmed/33745077 http://dx.doi.org/10.1007/s11010-021-04107-3 |
_version_ | 1783667543977754624 |
---|---|
author | Gupta, Anita Gupta, G. S. |
author_facet | Gupta, Anita Gupta, G. S. |
author_sort | Gupta, Anita |
collection | PubMed |
description | Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a virus called “Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).” In the majority of patients, infection with COVID-19 may be asymptomatic or may cause only mild symptoms. However, in some patients, there can also be immunological problems, such as macrophage activation syndrome (CSS) that results in cytokine storm syndrome (CSS) and acute respiratory distress syndrome (ARDS). Comprehension of host-microbe communications is the critical aspect in the advancement of new therapeutics against infectious illnesses. Endogenous animal lectins, a class of proteins, may perceive non-self glycans found on microorganisms. Serum mannose-binding lectin (sMBL), as a part of the innate immune framework, recognizes a wide range of microbial microorganisms and activates complement cascade via an antibody-independent pathway. Although the molecular basis for the intensity of SARS-CoV-2 infection is not generally understood, scientific literature indicates that COVID-19 is correlated with unregulated activation of the complement in terms of disease severity. Disseminated intravascular coagulation (DIC), inflammation, and immune paralysis contribute to unregulated complement activation. Pre-existing genetic defects in MBL and their association with complement play a major role in immune response dysregulation caused by SARS-CoV-2. In order to generate anti-complement-based therapies in Covid-19, an understanding of sMBL in immune response to SARS-CoV-2 and complement is therefore essential. This review highlights the role of endogenous sMBL and complement activation during SARS-CoV-2 infection and their therapeutic management by various agents, mainly plant lectins, since antiviral mannose-binding plant lectins (pMBLs) offer potential applications in the prevention and control of viral infections. |
format | Online Article Text |
id | pubmed-7981598 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-79815982021-03-23 Status of mannose-binding lectin (MBL) and complement system in COVID-19 patients and therapeutic applications of antiviral plant MBLs Gupta, Anita Gupta, G. S. Mol Cell Biochem Article Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a virus called “Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).” In the majority of patients, infection with COVID-19 may be asymptomatic or may cause only mild symptoms. However, in some patients, there can also be immunological problems, such as macrophage activation syndrome (CSS) that results in cytokine storm syndrome (CSS) and acute respiratory distress syndrome (ARDS). Comprehension of host-microbe communications is the critical aspect in the advancement of new therapeutics against infectious illnesses. Endogenous animal lectins, a class of proteins, may perceive non-self glycans found on microorganisms. Serum mannose-binding lectin (sMBL), as a part of the innate immune framework, recognizes a wide range of microbial microorganisms and activates complement cascade via an antibody-independent pathway. Although the molecular basis for the intensity of SARS-CoV-2 infection is not generally understood, scientific literature indicates that COVID-19 is correlated with unregulated activation of the complement in terms of disease severity. Disseminated intravascular coagulation (DIC), inflammation, and immune paralysis contribute to unregulated complement activation. Pre-existing genetic defects in MBL and their association with complement play a major role in immune response dysregulation caused by SARS-CoV-2. In order to generate anti-complement-based therapies in Covid-19, an understanding of sMBL in immune response to SARS-CoV-2 and complement is therefore essential. This review highlights the role of endogenous sMBL and complement activation during SARS-CoV-2 infection and their therapeutic management by various agents, mainly plant lectins, since antiviral mannose-binding plant lectins (pMBLs) offer potential applications in the prevention and control of viral infections. Springer US 2021-03-21 2021 /pmc/articles/PMC7981598/ /pubmed/33745077 http://dx.doi.org/10.1007/s11010-021-04107-3 Text en © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Article Gupta, Anita Gupta, G. S. Status of mannose-binding lectin (MBL) and complement system in COVID-19 patients and therapeutic applications of antiviral plant MBLs |
title | Status of mannose-binding lectin (MBL) and complement system in COVID-19 patients and therapeutic applications of antiviral plant MBLs |
title_full | Status of mannose-binding lectin (MBL) and complement system in COVID-19 patients and therapeutic applications of antiviral plant MBLs |
title_fullStr | Status of mannose-binding lectin (MBL) and complement system in COVID-19 patients and therapeutic applications of antiviral plant MBLs |
title_full_unstemmed | Status of mannose-binding lectin (MBL) and complement system in COVID-19 patients and therapeutic applications of antiviral plant MBLs |
title_short | Status of mannose-binding lectin (MBL) and complement system in COVID-19 patients and therapeutic applications of antiviral plant MBLs |
title_sort | status of mannose-binding lectin (mbl) and complement system in covid-19 patients and therapeutic applications of antiviral plant mbls |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7981598/ https://www.ncbi.nlm.nih.gov/pubmed/33745077 http://dx.doi.org/10.1007/s11010-021-04107-3 |
work_keys_str_mv | AT guptaanita statusofmannosebindinglectinmblandcomplementsystemincovid19patientsandtherapeuticapplicationsofantiviralplantmbls AT guptags statusofmannosebindinglectinmblandcomplementsystemincovid19patientsandtherapeuticapplicationsofantiviralplantmbls |