Cargando…
Author Correction: An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China
Autores principales: | Shi, Wenzhong, Tong, Chengzhuo, Zhang, Anshu, Wang, Bin, Shi, Zhicheng, Yao, Yepeng, Jia, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7983099/ https://www.ncbi.nlm.nih.gov/pubmed/33753843 http://dx.doi.org/10.1038/s42003-021-01924-6 |
Ejemplares similares
-
An extended Weight Kernel Density Estimation model forecasts COVID-19 onset risk and identifies spatiotemporal variations of lockdown effects in China
por: Shi, Wenzhong, et al.
Publicado: (2021) -
A Spatiotemporal Solution to Control COVID-19 Transmission at the Community Scale for Returning to Normalcy: COVID-19 Symptom Onset Risk Spatiotemporal Analysis
por: Tong, Chengzhuo, et al.
Publicado: (2023) -
How to control the spatiotemporal spread of Omicron in the region with low vaccination rates
por: Tong, Chengzhuo, et al.
Publicado: (2022) -
Understanding spatiotemporal symptom onset risk of Omicron BA.1, BA.2 and hamster-related Delta AY.127
por: Tong, Chengzhuo, et al.
Publicado: (2022) -
Tracking and controlling the spatiotemporal spread of SARS-CoV-2 Omicron variant in South Africa
por: Tong, Chengzhuo, et al.
Publicado: (2022)