Cargando…
A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations
BACKGROUND: Numerous studies have demonstrated that long non-coding RNAs are related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-disease associations for disease prognosis, diagnosis and therapy. Dozens of machine learning and deep learning algorithms have been...
Autores principales: | Shi, Zhuangwei, Zhang, Han, Jin, Chen, Quan, Xiongwen, Yin, Yanbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7983260/ https://www.ncbi.nlm.nih.gov/pubmed/33745450 http://dx.doi.org/10.1186/s12859-021-04073-z |
Ejemplares similares
-
Predicting miRNA-Disease Association Based on Neural Inductive Matrix Completion with Graph Autoencoders and Self-Attention Mechanism
por: Jin, Chen, et al.
Publicado: (2022) -
Representation Learning: Recommendation With Knowledge Graph via Triple-Autoencoder
por: Geng, Yishuai, et al.
Publicado: (2022) -
Gene knockout inference with variational graph autoencoder learning single-cell gene regulatory networks
por: Yang, Yongjian, et al.
Publicado: (2023) -
VGAEDTI: drug-target interaction prediction based on variational inference and graph autoencoder
por: Zhang, Yuanyuan, et al.
Publicado: (2023) -
Variational autoencoders learn transferrable representations of metabolomics data
por: Gomari, Daniel P., et al.
Publicado: (2022)