Cargando…
A competing risk joint model for dealing with different types of missing data in an intervention trial in prodromal Alzheimer’s disease
BACKGROUND: Missing data can complicate the interpretability of a clinical trial, especially if the proportion is substantial and if there are different, potentially outcome-dependent causes. METHODS: We aimed to obtain unbiased estimates, in the presence of a high level of missing data, for the int...
Autores principales: | van Oudenhoven, Floor M., Swinkels, Sophie H. N., Soininen, Hilkka, Kivipelto, Miia, Hartmann, Tobias, Rizopoulos, Dimitris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7983401/ https://www.ncbi.nlm.nih.gov/pubmed/33752738 http://dx.doi.org/10.1186/s13195-021-00801-y |
Ejemplares similares
-
Correction: A competing risk joint model for dealing with different types of missing data in an intervention trial in prodromal Alzheimer’s disease
por: van Oudenhoven, Floor M., et al.
Publicado: (2023) -
Using joint models to disentangle intervention effect types and baseline confounding: an application within an intervention study in prodromal Alzheimer’s disease with Fortasyn Connect
por: van Oudenhoven, Floor M., et al.
Publicado: (2019) -
Modeling the underlying biological processes in Alzheimer's disease using a multivariate competing risk joint model
por: van Oudenhoven, Floor M., et al.
Publicado: (2022) -
36‐month LipiDiDiet multinutrient clinical trial in prodromal Alzheimer's disease
por: Soininen, Hilkka, et al.
Publicado: (2020) -
24-month intervention with a specific multinutrient in people with prodromal Alzheimer's disease (LipiDiDiet): a randomised, double-blind, controlled trial
por: Soininen, Hilkka, et al.
Publicado: (2017)