Cargando…
Machine learning compared with rule‐in/rule‐out algorithms and logistic regression to predict acute myocardial infarction based on troponin T concentrations
OBJECTIVE: Computerized decision‐support tools may improve diagnosis of acute myocardial infarction (AMI) among patients presenting with chest pain at the emergency department (ED). The primary aim was to assess the predictive accuracy of machine learning algorithms based on paired high‐sensitivity...
Autores principales: | Björkelund, Anders, Ohlsson, Mattias, Lundager Forberg, Jakob, Mokhtari, Arash, Olsson de Capretz, Pontus, Ekelund, Ulf, Björk, Jonas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7984484/ https://www.ncbi.nlm.nih.gov/pubmed/33778804 http://dx.doi.org/10.1002/emp2.12363 |
Ejemplares similares
-
Machine learning for early prediction of acute myocardial infarction or death in acute chest pain patients using electrocardiogram and blood tests at presentation
por: de Capretz, Pontus Olsson, et al.
Publicado: (2023) -
Microwave scan and brain biomarkers to rule out intracranial hemorrhage: study protocol of a planned prospective study (MBI01)
por: Vedin, Tomas, et al.
Publicado: (2021) -
Rules and Logistics
por: CERN. Geneva
Publicado: (2015) -
Rules and Logistics
por: RADEMAKERS, Fons
Publicado: (2015) -
Rules and logistics
por: RADEMAKERS, Fons
Publicado: (2014)