Cargando…
A practical method to quantify knowledge‐based DVH prediction accuracy and uncertainty with reference cohorts
The adoption of knowledge‐based dose‐volume histogram (DVH) prediction models for assessing organ‐at‐risk (OAR) sparing in radiotherapy necessitates quantification of prediction accuracy and uncertainty. Moreover, DVH prediction error bands should be readily interpretable as confidence intervals in...
Autores principales: | Covele, Brent M., Carroll, Cody J., Moore, Kevin L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7984487/ https://www.ncbi.nlm.nih.gov/pubmed/33634947 http://dx.doi.org/10.1002/acm2.13199 |
Ejemplares similares
-
Automation of DVH Constraint Checks and Physics Quality Control Review Improves Patient Safety in Radiotherapy
por: Wahlstedt, Isak, et al.
Publicado: (2021) -
DVH Analytics: A DVH database for clinicians and researchers
por: Cutright, Dan, et al.
Publicado: (2018) -
Assessment of Uncertainty Depending on Various Conditions in Modulation Transfer Function Calculation Using the Edge Method
por: Maruyama, Sho
Publicado: (2021) -
Thresholding Segmentation Errors and Uncertainty with Patient-Specific Geometries
por: Toma, M., et al.
Publicado: (2021) -
A method for quantifying pulmonary Legionella pneumophila infection in mouse lungs by flow cytometry
por: Ang, Desmond Koon Yong, et al.
Publicado: (2012)