Cargando…

Deductive Verification of Floating-Point Java Programs in KeY

Deductive verification has been successful in verifying interesting properties of real-world programs. One notable gap is the limited support for floating-point reasoning. This is unfortunate, as floating-point arithmetic is particularly unintuitive to reason about due to rounding as well as the pre...

Descripción completa

Detalles Bibliográficos
Autores principales: Abbasi, Rosa, Schiffl, Jonas, Darulova, Eva, Ulbrich, Mattias, Ahrendt, Wolfgang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7984528/
http://dx.doi.org/10.1007/978-3-030-72013-1_13
Descripción
Sumario:Deductive verification has been successful in verifying interesting properties of real-world programs. One notable gap is the limited support for floating-point reasoning. This is unfortunate, as floating-point arithmetic is particularly unintuitive to reason about due to rounding as well as the presence of the special values infinity and ‘Not a Number’ (NaN). In this paper, we present the first floating-point support in a deductive verification tool for the Java programming language. Our support in the KeY verifier handles arithmetic via floating-point decision procedures inside SMT solvers and transcendental functions via axiomatization. We evaluate this integration on new benchmarks, and show that this approach is powerful enough to prove the absence of floating-point special values—often a prerequisite for further reasoning about numerical computations—as well as certain functional properties for realistic benchmarks.