Cargando…
Symbolic Coloured SCC Decomposition
Problems arising in many scientific disciplines are often modelled using edge-coloured directed graphs. These can be enormous in the number of both vertices and colours. Given such a graph, the original problem frequently translates to the detection of the graph’s strongly connected components, whic...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7984532/ http://dx.doi.org/10.1007/978-3-030-72013-1_4 |
Sumario: | Problems arising in many scientific disciplines are often modelled using edge-coloured directed graphs. These can be enormous in the number of both vertices and colours. Given such a graph, the original problem frequently translates to the detection of the graph’s strongly connected components, which is challenging at this scale. We propose a new, symbolic algorithm that computes all the monochromatic strongly connected components of an edge-coloured graph. In the worst case, the algorithm performs [Formula: see text] symbolic steps, where p is the number of colours and n the number of vertices. We evaluate the algorithm using an experimental implementation based on Binary Decision Diagrams (BDDs) and large (up to [Formula: see text] ) coloured graphs produced by models appearing in systems biology. |
---|