Cargando…

Correctness of Sequential Monte Carlo Inference for Probabilistic Programming Languages

Probabilistic programming is an approach to reasoning under uncertainty by encoding inference problems as programs. In order to solve these inference problems, probabilistic programming languages (PPLs) employ different inference algorithms, such as sequential Monte Carlo (SMC), Markov chain Monte C...

Descripción completa

Detalles Bibliográficos
Autores principales: Lundén, Daniel, Borgström, Johannes, Broman, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7984533/
http://dx.doi.org/10.1007/978-3-030-72019-3_15
Descripción
Sumario:Probabilistic programming is an approach to reasoning under uncertainty by encoding inference problems as programs. In order to solve these inference problems, probabilistic programming languages (PPLs) employ different inference algorithms, such as sequential Monte Carlo (SMC), Markov chain Monte Carlo (MCMC), or variational methods. Existing research on such algorithms mainly concerns their implementation and efficiency, rather than the correctness of the algorithms themselves when applied in the context of expressive PPLs. To remedy this, we give a correctness proof for SMC methods in the context of an expressive PPL calculus, representative of popular PPLs such as WebPPL, Anglican, and Birch. Previous work have studied correctness of MCMC using an operational semantics, and correctness of SMC and MCMC in a denotational setting without term recursion. However, for SMC inference—one of the most commonly used algorithms in PPLs as of today—no formal correctness proof exists in an operational setting. In particular, an open question is if the resample locations in a probabilistic program affects the correctness of SMC. We solve this fundamental problem, and make four novel contributions: (i) we extend an untyped PPL lambda calculus and operational semantics to include explicit resample terms, expressing synchronization points in SMC inference; (ii) we prove, for the first time, that subject to mild restrictions, any placement of the explicit resample terms is valid for a generic form of SMC inference; (iii) as a result of (ii), our calculus benefits from classic results from the SMC literature: a law of large numbers and an unbiased estimate of the model evidence; and (iv) we formalize the bootstrap particle filter for the calculus and discuss how our results can be further extended to other SMC algorithms.