Cargando…
Reverse AD at Higher Types: Pure, Principled and Denotationally Correct
We show how to define forward- and reverse-mode automatic differentiation source-code transformations or on a standard higher-order functional language. The transformations generate purely functional code, and they are principled in the sense that their definition arises from a categorical universal...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7984537/ http://dx.doi.org/10.1007/978-3-030-72019-3_22 |
Sumario: | We show how to define forward- and reverse-mode automatic differentiation source-code transformations or on a standard higher-order functional language. The transformations generate purely functional code, and they are principled in the sense that their definition arises from a categorical universal property. We give a semantic proof of correctness of the transformations. In their most elegant formulation, the transformations generate code with linear types. However, we demonstrate how the transformations can be implemented in a standard functional language without sacrificing correctness. To do so, we make use of abstract data types to represent the required linear types, e.g. through the use of a basic module system. |
---|