Cargando…
SyReNN: A Tool for Analyzing Deep Neural Networks
Deep Neural Networks (DNNs) are rapidly gaining popularity in a variety of important domains. Formally, DNNs are complicated vector-valued functions which come in a variety of sizes and applications. Unfortunately, modern DNNs have been shown to be vulnerable to a variety of attacks and buggy behavi...
Autores principales: | Sotoudeh, Matthew, Thakur, Aditya V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7984545/ http://dx.doi.org/10.1007/978-3-030-72013-1_15 |
Ejemplares similares
-
DIA-NN: Neural networks and interference correction enable deep proteome coverage in high throughput
por: Demichev, Vadim, et al.
Publicado: (2019) -
A deep neural network method for analyzing the CMS HGCal events
por: Grasseau, Gilles Jean
Publicado: (2020) -
Synthetic Micrographs of Bacteria (SyMBac) allows accurate segmentation of bacterial cells using deep neural networks
por: Hardo, Georgeos, et al.
Publicado: (2022) -
ExplaiNN: interpretable and transparent neural networks for genomics
por: Novakovsky, Gherman, et al.
Publicado: (2023) -
Plant recognition by AI: Deep neural nets, transformers, and kNN in deep embeddings
por: Picek, Lukáš, et al.
Publicado: (2022)