Cargando…
A Two-Phase Approach for Conditional Floating-Point Verification
Tools that automatically prove the absence or detect the presence of large floating-point roundoff errors or the special values NaN and Infinity greatly help developers to reason about the unintuitive nature of floating-point arithmetic. We show that state-of-the-art tools, however, support or provi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7984556/ http://dx.doi.org/10.1007/978-3-030-72013-1_3 |
Sumario: | Tools that automatically prove the absence or detect the presence of large floating-point roundoff errors or the special values NaN and Infinity greatly help developers to reason about the unintuitive nature of floating-point arithmetic. We show that state-of-the-art tools, however, support or provide non-trivial results only for relatively short programs. We propose a framework for combining different static and dynamic analyses that allows to increase their reach beyond what they can do individually. Furthermore, we show how adaptations of existing dynamic and static techniques effectively trade some soundness guarantees for increased scalability, providing conditional verification of floating-point kernels in realistic programs. |
---|