Cargando…
An SMT-Based Approach for Verifying Binarized Neural Networks
Deep learning has emerged as an effective approach for creating modern software systems, with neural networks often surpassing hand-crafted systems. Unfortunately, neural networks are known to suffer from various safety and security issues. Formal verification is a promising avenue for tackling this...
Autores principales: | Amir, Guy, Wu, Haoze, Barrett, Clark, Katz, Guy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7984573/ http://dx.doi.org/10.1007/978-3-030-72013-1_11 |
Ejemplares similares
-
Synaptic metaplasticity in binarized neural networks
por: Laborieux, Axel, et al.
Publicado: (2021) -
Algorithms for verifying deep neural networks
por: Liu, Changliu, et al.
Publicado: (2021) -
An adiabatic method to train binarized artificial neural networks
por: Zhao, Yuansheng, et al.
Publicado: (2021) -
sEMG-Based Hand Gesture Recognition Using Binarized Neural Network
por: Kang, Soongyu, et al.
Publicado: (2023) -
MachSMT: A Machine Learning-based Algorithm Selector for SMT Solvers
por: Scott, Joseph, et al.
Publicado: (2021)