Cargando…
Using Machine Learning to Unravel the Value of Radiographic Features for the Classification of Bone Tumors
OBJECTIVES: To build and validate random forest (RF) models for the classification of bone tumors based on the conventional radiographic features of the lesion and patients' clinical characteristics, and identify the most essential features for the classification of bone tumors. MATERIALS AND M...
Autores principales: | Pan, Derun, Liu, Renyi, Zheng, Bowen, Yuan, Jianxiang, Zeng, Hui, He, Zilong, Luo, Zhendong, Qin, Genggeng, Chen, Weiguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7984886/ https://www.ncbi.nlm.nih.gov/pubmed/33791381 http://dx.doi.org/10.1155/2021/8811056 |
Ejemplares similares
-
Predicting futile recanalization, malignant cerebral edema, and cerebral herniation using intelligible ensemble machine learning following mechanical thrombectomy for acute ischemic stroke
por: Zeng, Weixiong, et al.
Publicado: (2022) -
Pure and Mixed Tubular Carcinoma of the Breast: Mammographic Features, Clinicopathological Characteristics and Prognostic Analysis
por: Wen, Chanjuan, et al.
Publicado: (2021) -
OXPHOS-dependent metabolic reprogramming prompts metastatic potential of breast cancer cells under osteogenic differentiation
por: Hu, Yangling, et al.
Publicado: (2020) -
The diagnostic value of chest X-ray in coronavirus disease 2019: A comparative study of X-ray and CT
por: Zeng, Fengxia, et al.
Publicado: (2021) -
An Interpretable Model-Based Prediction of Severity and Crucial Factors in Patients with COVID-19
por: Zheng, Bowen, et al.
Publicado: (2021)