Cargando…
Two-stage Cox-nnet: biologically interpretable neural-network model for prognosis prediction and its application in liver cancer survival using histopathology and transcriptomic data
Pathological images are easily accessible data with the potential of prognostic biomarkers. Moreover, integration of heterogeneous data types from multi-modality, such as pathological image and gene expression data, is invaluable to help predicting cancer patient survival. However, the analytical ch...
Autores principales: | Zhan, Zhucheng, Jing, Zheng, He, Bing, Hosseini, Noshad, Westerhoff, Maria, Choi, Eun-Young, Garmire, Lana X |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985035/ https://www.ncbi.nlm.nih.gov/pubmed/33778491 http://dx.doi.org/10.1093/nargab/lqab015 |
Ejemplares similares
-
Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data
por: Ching, Travers, et al.
Publicado: (2018) -
Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research
por: Mädler, Sophia Clara, et al.
Publicado: (2021) -
Platypus: an open-access software for integrating lymphocyte single-cell immune repertoires with transcriptomes
por: Yermanos, Alexander, et al.
Publicado: (2021) -
GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins
por: Brůna, Tomáš, et al.
Publicado: (2020) -
Improved computational analysis of ribosome dynamics from 5′P degradome data using fivepseq
por: Nersisyan, Lilit, et al.
Publicado: (2020)