Cargando…

Transcriptomic analyses of the termite, Cryptotermes secundus, reveal a gene network underlying a long lifespan and high fecundity

Organisms are typically characterized by a trade-off between fecundity and longevity. Notable exceptions are social insects. In insect colonies, the reproducing caste (queens) outlive their non-reproducing nestmate workers by orders of magnitude and realize fecundities and lifespans unparalleled amo...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Silu, Werle, Jana, Korb, Judith
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985136/
https://www.ncbi.nlm.nih.gov/pubmed/33753888
http://dx.doi.org/10.1038/s42003-021-01892-x
Descripción
Sumario:Organisms are typically characterized by a trade-off between fecundity and longevity. Notable exceptions are social insects. In insect colonies, the reproducing caste (queens) outlive their non-reproducing nestmate workers by orders of magnitude and realize fecundities and lifespans unparalleled among insects. How this is achieved is not understood. Here, we identified a single module of co-expressed genes that characterized queens in the termite species Cryptotermes secundus. It encompassed genes from all essential pathways known to be involved in life-history regulation in solitary model organisms. By manipulating its endocrine component, we tested the recent hypothesis that re-wiring along the nutrient-sensing/endocrine/fecundity axis can account for the reversal of the fecundity/longevity trade-off in social insect queens. Our data from termites do not support this hypothesis. However, they revealed striking links to social communication that offer new avenues to understand the re-modelling of the fecundity/longevity trade-off in social insects.