Cargando…

Contextual MEG and EEG Source Estimates Using Spatiotemporal LSTM Networks

Most magneto- and electroencephalography (M/EEG) based source estimation techniques derive their estimates sample wise, independently across time. However, neuronal assemblies are intricately interconnected, constraining the temporal evolution of neural activity that is detected by MEG and EEG; the...

Descripción completa

Detalles Bibliográficos
Autores principales: Dinh, Christoph, Samuelsson, John G., Hunold, Alexander, Hämäläinen, Matti S., Khan, Sheraz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985163/
https://www.ncbi.nlm.nih.gov/pubmed/33767606
http://dx.doi.org/10.3389/fnins.2021.552666
_version_ 1783668185092849664
author Dinh, Christoph
Samuelsson, John G.
Hunold, Alexander
Hämäläinen, Matti S.
Khan, Sheraz
author_facet Dinh, Christoph
Samuelsson, John G.
Hunold, Alexander
Hämäläinen, Matti S.
Khan, Sheraz
author_sort Dinh, Christoph
collection PubMed
description Most magneto- and electroencephalography (M/EEG) based source estimation techniques derive their estimates sample wise, independently across time. However, neuronal assemblies are intricately interconnected, constraining the temporal evolution of neural activity that is detected by MEG and EEG; the observed neural currents must thus be highly context dependent. Here, we use a network of Long Short-Term Memory (LSTM) cells where the input is a sequence of past source estimates and the output is a prediction of the following estimate. This prediction is then used to correct the estimate. In this study, we applied this technique on noise-normalized minimum norm estimates (MNE). Because the correction is found by using past activity (context), we call this implementation Contextual MNE (CMNE), although this technique can be used in conjunction with any source estimation method. We test CMNE on simulated epileptiform activity and recorded auditory steady state response (ASSR) data, showing that the CMNE estimates exhibit a higher degree of spatial fidelity than the unfiltered estimates in the tested cases.
format Online
Article
Text
id pubmed-7985163
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-79851632021-03-24 Contextual MEG and EEG Source Estimates Using Spatiotemporal LSTM Networks Dinh, Christoph Samuelsson, John G. Hunold, Alexander Hämäläinen, Matti S. Khan, Sheraz Front Neurosci Neuroscience Most magneto- and electroencephalography (M/EEG) based source estimation techniques derive their estimates sample wise, independently across time. However, neuronal assemblies are intricately interconnected, constraining the temporal evolution of neural activity that is detected by MEG and EEG; the observed neural currents must thus be highly context dependent. Here, we use a network of Long Short-Term Memory (LSTM) cells where the input is a sequence of past source estimates and the output is a prediction of the following estimate. This prediction is then used to correct the estimate. In this study, we applied this technique on noise-normalized minimum norm estimates (MNE). Because the correction is found by using past activity (context), we call this implementation Contextual MNE (CMNE), although this technique can be used in conjunction with any source estimation method. We test CMNE on simulated epileptiform activity and recorded auditory steady state response (ASSR) data, showing that the CMNE estimates exhibit a higher degree of spatial fidelity than the unfiltered estimates in the tested cases. Frontiers Media S.A. 2021-03-09 /pmc/articles/PMC7985163/ /pubmed/33767606 http://dx.doi.org/10.3389/fnins.2021.552666 Text en Copyright © 2021 Dinh, Samuelsson, Hunold, Hämäläinen and Khan. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Dinh, Christoph
Samuelsson, John G.
Hunold, Alexander
Hämäläinen, Matti S.
Khan, Sheraz
Contextual MEG and EEG Source Estimates Using Spatiotemporal LSTM Networks
title Contextual MEG and EEG Source Estimates Using Spatiotemporal LSTM Networks
title_full Contextual MEG and EEG Source Estimates Using Spatiotemporal LSTM Networks
title_fullStr Contextual MEG and EEG Source Estimates Using Spatiotemporal LSTM Networks
title_full_unstemmed Contextual MEG and EEG Source Estimates Using Spatiotemporal LSTM Networks
title_short Contextual MEG and EEG Source Estimates Using Spatiotemporal LSTM Networks
title_sort contextual meg and eeg source estimates using spatiotemporal lstm networks
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985163/
https://www.ncbi.nlm.nih.gov/pubmed/33767606
http://dx.doi.org/10.3389/fnins.2021.552666
work_keys_str_mv AT dinhchristoph contextualmegandeegsourceestimatesusingspatiotemporallstmnetworks
AT samuelssonjohng contextualmegandeegsourceestimatesusingspatiotemporallstmnetworks
AT hunoldalexander contextualmegandeegsourceestimatesusingspatiotemporallstmnetworks
AT hamalainenmattis contextualmegandeegsourceestimatesusingspatiotemporallstmnetworks
AT khansheraz contextualmegandeegsourceestimatesusingspatiotemporallstmnetworks