Cargando…
Machine learning estimation of tissue optical properties
Dynamic, in vivo measurement of the optical properties of biological tissues is still an elusive and critically important problem. Here we develop a technique for inverting a Monte Carlo simulation to extract tissue optical properties from the statistical moments of the spatio-temporal response of t...
Autores principales: | Hokr, Brett H., Bixler, Joel N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985205/ https://www.ncbi.nlm.nih.gov/pubmed/33753794 http://dx.doi.org/10.1038/s41598-021-85994-w |
Ejemplares similares
-
Enabling time resolved microscopy with random Raman lasing
por: Hokr, Brett H., et al.
Publicado: (2017) -
Bright emission from a random Raman laser
por: Hokr, Brett H., et al.
Publicado: (2014) -
Machine learning approach for rapid and accurate estimation of optical properties using spatial frequency domain imaging
por: Panigrahi, Swapnesh, et al.
Publicado: (2018) -
Deep learning-based method to accurately estimate breast tissue optical properties in the presence of the chest wall
por: Zhang, Menghao, et al.
Publicado: (2021) -
Extracting Tissue Optical Properties and Detecting Bruised Tissue in Pears Quickly and Accurately Based on Spatial Frequency Domain Imaging and Machine Learning
por: Xing, Shengqiang, et al.
Publicado: (2023)