Cargando…
Improved sequence-based prediction of interaction sites in α-helical transmembrane proteins by deep learning
Interactions between transmembrane (TM) proteins are fundamental for a wide spectrum of cellular functions, but precise molecular details of these interactions remain largely unknown due to the scarcity of experimentally determined three-dimensional complex structures. Computational techniques are t...
Autores principales: | Sun, Jianfeng, Frishman, Dmitrij |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985279/ https://www.ncbi.nlm.nih.gov/pubmed/33815689 http://dx.doi.org/10.1016/j.csbj.2021.03.005 |
Ejemplares similares
-
Improving the topology prediction of α-helical transmembrane proteins with deep transfer learning
por: Wang, Lei, et al.
Publicado: (2022) -
Classification of α-Helical Membrane Proteins Using Predicted Helix Architectures
por: Neumann, Sindy, et al.
Publicado: (2013) -
AllesTM: predicting multiple structural features of transmembrane proteins
por: Hönigschmid, Peter, et al.
Publicado: (2020) -
Transmembrane α helices
por: Mall, Sanjay, et al.
Publicado: (2002) -
Prediction of protein interaction types based on sequence and network features
por: Goebels, Florian, et al.
Publicado: (2013)