Cargando…
Using Spatial Probability Maps to Highlight Potential Inaccuracies in Deep Learning-Based Contours: Facilitating Online Adaptive Radiation Therapy
PURPOSE: Contouring organs at risk remains a largely manual task, which is time consuming and prone to variation. Deep learning-based delineation (DLD) shows promise both in terms of quality and speed, but it does not yet perform perfectly. Because of that, manual checking of DLD is still recommende...
Autores principales: | van Rooij, Ward, Verbakel, Wilko F., Slotman, Berend J., Dahele, Max |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985281/ https://www.ncbi.nlm.nih.gov/pubmed/33778184 http://dx.doi.org/10.1016/j.adro.2021.100658 |
Ejemplares similares
-
Markerless Real-Time 3-Dimensional kV Tracking of Lung Tumors During Free Breathing Stereotactic Radiation Therapy
por: de Bruin, Kimmie, et al.
Publicado: (2021) -
Strategies to improve deep learning-based salivary gland segmentation
por: van Rooij, Ward, et al.
Publicado: (2020) -
Single-fraction 34 Gy Lung Stereotactic Body Radiation Therapy Using Proton Transmission Beams: FLASH-dose Calculations and the Influence of Different Dose-rate Methods and Dose/Dose-rate Thresholds
por: van Marlen, Patricia, et al.
Publicado: (2022) -
Single Ultra-High Dose Rate Proton Transmission Beam for Whole Breast FLASH-Irradiation: Quantification of FLASH-Dose and Relation with Beam Parameters
por: van Marlen, Patricia, et al.
Publicado: (2023) -
Influence of Beam Angle on Normal Tissue Complication Probability of Knowledge-Based Head and Neck Cancer Proton Planning
por: Hytönen, Roni, et al.
Publicado: (2022)