Cargando…
Evaluation of multi-hazard map produced using MaxEnt machine learning technique
Natural hazards are diverse and uneven in time and space, therefore, understanding its complexity is key to save human lives and conserve natural ecosystems. Reducing the outputs obtained after each modelling analysis is key to present the results for stakeholders, land managers and policymakers. So...
Autores principales: | Javidan, Narges, Kavian, Ataollah, Pourghasemi, Hamid Reza, Conoscenti, Christian, Jafarian, Zeinab, Rodrigo-Comino, Jesús |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985520/ https://www.ncbi.nlm.nih.gov/pubmed/33753798 http://dx.doi.org/10.1038/s41598-021-85862-7 |
Ejemplares similares
-
8th MaxEnt Workshop
por: Skilling, J
Publicado: (1989) -
Overview of the 37th MaxEnt
por: Dias, Teresa C. M., et al.
Publicado: (2018) -
What can MaxEnt reveal about high-density recordings and what can high-density recordings reveal about MaxEnt?
por: Panas, Dagmara, et al.
Publicado: (2011) -
Calibration Invariance of the MaxEnt Distribution in the Maximum Entropy Principle
por: Korbel, Jan
Publicado: (2021) -
On a Robust MaxEnt Process Regression Model with Sample-Selection
por: Kim, Hea-Jung, et al.
Publicado: (2018)