Cargando…
Multimodal deep learning from satellite and street-level imagery for measuring income, overcrowding, and environmental deprivation in urban areas
Data collected at large scale and low cost (e.g. satellite and street level imagery) have the potential to substantially improve resolution, spatial coverage, and temporal frequency of measurement of urban inequalities. Multiple types of data from different sources are often available for a given ge...
Autores principales: | Suel, Esra, Bhatt, Samir, Brauer, Michael, Flaxman, Seth, Ezzati, Majid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Elsevier Pub. Co
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985619/ https://www.ncbi.nlm.nih.gov/pubmed/33941991 http://dx.doi.org/10.1016/j.rse.2021.112339 |
Ejemplares similares
-
Measuring social, environmental and health inequalities using deep learning and street imagery
por: Suel, Esra, et al.
Publicado: (2019) -
A Deep Learning Approach for Meter-Scale Air Quality Estimation in Urban Environments Using Very High-Spatial-Resolution Satellite Imagery
por: Sorek-Hamer, Meytar, et al.
Publicado: (2022) -
What you see is what you breathe? Estimating air pollution spatial variation using street level imagery
por: Suel, Esra, et al.
Publicado: (2022) -
Do poverty and wealth look the same the world over? A comparative study of 12 cities from five high-income countries using street images
por: Suel, Esra, et al.
Publicado: (2023) -
Characterisation of urban environment and activity across space and time using street images and deep learning in Accra
por: Nathvani, Ricky, et al.
Publicado: (2022)