Cargando…

Retortamonads from vertebrate hosts share features of anaerobic metabolism and pre-adaptations to parasitism with diplomonads

Although the mitochondria of extant eukaryotes share a single origin, functionally these organelles diversified to a great extent, reflecting lifestyles of the organisms that host them. In anaerobic protists of the group Metamonada, mitochondria are present in reduced forms (also termed hydrogenosom...

Descripción completa

Detalles Bibliográficos
Autores principales: Füssy, Zoltán, Vinopalová, Martina, Treitli, Sebastian Cristian, Pánek, Tomáš, Smejkalová, Pavla, Čepička, Ivan, Doležal, Pavel, Hampl, Vladimír
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985675/
https://www.ncbi.nlm.nih.gov/pubmed/33626397
http://dx.doi.org/10.1016/j.parint.2021.102308
Descripción
Sumario:Although the mitochondria of extant eukaryotes share a single origin, functionally these organelles diversified to a great extent, reflecting lifestyles of the organisms that host them. In anaerobic protists of the group Metamonada, mitochondria are present in reduced forms (also termed hydrogenosomes or mitosomes) and a complete loss of mitochondrion in Monocercomonoides exilis (Metamonada:Preaxostyla) has also been reported. Within metamonads, retortamonads from the gastrointestinal tract of vertebrates form a sister group to parasitic diplomonads (e.g. Giardia and Spironucleus) and have also been hypothesized to completely lack mitochondria. We obtained transcriptomic data from Retortamonas dobelli and R. caviae and searched for enzymes of the core metabolism as well as mitochondrion- and parasitism-related proteins. Our results indicate that retortamonads have a streamlined metabolism lacking pathways for metabolites they are probably capable of obtaining from prey bacteria or their environment, reminiscent of the biochemical arrangement in other metamonads. Retortamonads were surprisingly found do encode homologs of components of Giardia‘s remarkable ventral disk, as well as homologs of regulatory NEK kinases and secreted lytic enzymes known for involvement in host colonization by Giardia. These can be considered pre-adaptations of these intestinal microorganisms to parasitism. Furthermore, we found traces of the mitochondrial metabolism represented by iron‑sulfur cluster assembly subunits, subunits of mitochondrial translocation and chaperone machinery and, importantly, [FeFe]‑hydrogenases and hydrogenase maturases (HydE, HydF and HydG). Altogether, our results strongly suggest that a remnant mitochondrion is still present.