Cargando…
An Evaluation Methodology for Interactive Reinforcement Learning with Simulated Users
Interactive reinforcement learning methods utilise an external information source to evaluate decisions and accelerate learning. Previous work has shown that human advice could significantly improve learning agents’ performance. When evaluating reinforcement learning algorithms, it is common to repe...
Autores principales: | Bignold, Adam, Cruz, Francisco, Dazeley, Richard, Vamplew, Peter, Foale, Cameron |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985787/ https://www.ncbi.nlm.nih.gov/pubmed/33572399 http://dx.doi.org/10.3390/biomimetics6010013 |
Ejemplares similares
-
Towards a Broad-Persistent Advising Approach for Deep Interactive Reinforcement Learning in Robotic Environments
por: Nguyen, Hung Son, et al.
Publicado: (2023) -
Automatic Assistance to Cognitive Disabled Web Users via Reinforcement Learning on the Browser
por: Murillo-Morales, Tomas, et al.
Publicado: (2020) -
Understanding Human Decision Making in an Interactive Landslide Simulator Tool via Reinforcement Learning
por: Chaturvedi, Pratik, et al.
Publicado: (2021) -
Simulating bout-and-pause patterns with reinforcement learning
por: Yamada, Kota, et al.
Publicado: (2020) -
Methodologies to Evaluate the Micromechanics Flexural Strength Properties of Natural-Fiber-Reinforced Composites: The Case of Abaca-Fiber-Reinforced Bio Polyethylene Composites
por: Seculi, Faust, et al.
Publicado: (2023)