Cargando…

Machine Learning for Mental Health in Social Media: Bibliometric Study

BACKGROUND: Social media platforms provide an easily accessible and time-saving communication approach for individuals with mental disorders compared to face-to-face meetings with medical providers. Recently, machine learning (ML)-based mental health exploration using large-scale social media data h...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Jina, Lee, Daeun, Park, Eunil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985801/
https://www.ncbi.nlm.nih.gov/pubmed/33683209
http://dx.doi.org/10.2196/24870
Descripción
Sumario:BACKGROUND: Social media platforms provide an easily accessible and time-saving communication approach for individuals with mental disorders compared to face-to-face meetings with medical providers. Recently, machine learning (ML)-based mental health exploration using large-scale social media data has attracted significant attention. OBJECTIVE: We aimed to provide a bibliometric analysis and discussion on research trends of ML for mental health in social media. METHODS: Publications addressing social media and ML in the field of mental health were retrieved from the Scopus and Web of Science databases. We analyzed the publication distribution to measure productivity on sources, countries, institutions, authors, and research subjects, and visualized the trends in this field using a keyword co-occurrence network. The research methodologies of previous studies with high citations are also thoroughly described. RESULTS: We obtained a total of 565 relevant papers published from 2015 to 2020. In the last 5 years, the number of publications has demonstrated continuous growth with Lecture Notes in Computer Science and Journal of Medical Internet Research as the two most productive sources based on Scopus and Web of Science records. In addition, notable methodological approaches with data resources presented in high-ranking publications were investigated. CONCLUSIONS: The results of this study highlight continuous growth in this research area. Moreover, we retrieved three main discussion points from a comprehensive overview of highly cited publications that provide new in-depth directions for both researchers and practitioners.