Cargando…
Machine Learning for Mental Health in Social Media: Bibliometric Study
BACKGROUND: Social media platforms provide an easily accessible and time-saving communication approach for individuals with mental disorders compared to face-to-face meetings with medical providers. Recently, machine learning (ML)-based mental health exploration using large-scale social media data h...
Autores principales: | Kim, Jina, Lee, Daeun, Park, Eunil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985801/ https://www.ncbi.nlm.nih.gov/pubmed/33683209 http://dx.doi.org/10.2196/24870 |
Ejemplares similares
-
Authors’ Reply to: Bibliometric Studies and the Discipline of Social Media Mental Health Research. Comment on “Machine Learning for Mental Health in Social Media: Bibliometric Study”
por: Kim, Jina, et al.
Publicado: (2021) -
A deep learning model for detecting mental illness from user content on social media
por: Kim, Jina, et al.
Publicado: (2020) -
Bibliometric Studies and the Discipline of Social Media Mental Health Research. Comment on “Machine Learning for Mental Health in Social Media: Bibliometric Study”
por: Resnik, Philip, et al.
Publicado: (2021) -
Medical and Health-Related Misinformation on Social Media: Bibliometric Study of the Scientific Literature
por: Yeung, Andy Wai Kan, et al.
Publicado: (2022) -
Seeking Mental Health Support Among College Students in Video-Based Social Media: Content and Statistical Analysis of YouTube Videos
por: Choi, Bogeum, et al.
Publicado: (2021)