Cargando…

Energy Efficient Ultrahigh Flux Separation of Oily Pollutants from Water with Superhydrophilic Nanoscale Metal–Organic Framework Architectures

The rising demand for clean water for a growing and increasingly urban global population is one of the most urgent issues of our time. Here, we introduce the synthesis of a unique nanoscale architecture of pillar‐like Co‐CAT‐1 metal–organic framework (MOF) crystallites on gold‐coated woven stainless...

Descripción completa

Detalles Bibliográficos
Autores principales: Mähringer, Andre, Hennemann, Matthias, Clark, Timothy, Bein, Thomas, Medina, Dana D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986099/
https://www.ncbi.nlm.nih.gov/pubmed/33015946
http://dx.doi.org/10.1002/anie.202012428
_version_ 1783668375018274816
author Mähringer, Andre
Hennemann, Matthias
Clark, Timothy
Bein, Thomas
Medina, Dana D.
author_facet Mähringer, Andre
Hennemann, Matthias
Clark, Timothy
Bein, Thomas
Medina, Dana D.
author_sort Mähringer, Andre
collection PubMed
description The rising demand for clean water for a growing and increasingly urban global population is one of the most urgent issues of our time. Here, we introduce the synthesis of a unique nanoscale architecture of pillar‐like Co‐CAT‐1 metal–organic framework (MOF) crystallites on gold‐coated woven stainless steel meshes with large, 50 μm apertures. These nanostructured mesh surfaces feature superhydrophilic and underwater superoleophobic wetting properties, allowing for gravity‐driven, highly efficient oil–water separation featuring water fluxes of up to nearly one million L m(−2) h(−1). Water physisorption experiments reveal the hydrophilic nature of Co‐CAT‐1 with a total water vapor uptake at room temperature of 470 cm(3) g(−1). Semiempirical molecular orbital calculations shed light on water affinity of the inner and outer pore surfaces. The MOF‐based membranes enable high separation efficiencies for a number of liquids tested, including the notorious water pollutant, crude oil, affording chemical oxygen demand (COD) concentrations below 25 mg L(−1) of the effluent. Our results demonstrate the great impact of suitable nanoscale surface architectures as a means of encoding on‐surface extreme wetting properties, yielding energy‐efficient water‐selective large‐aperture membranes.
format Online
Article
Text
id pubmed-7986099
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-79860992021-03-25 Energy Efficient Ultrahigh Flux Separation of Oily Pollutants from Water with Superhydrophilic Nanoscale Metal–Organic Framework Architectures Mähringer, Andre Hennemann, Matthias Clark, Timothy Bein, Thomas Medina, Dana D. Angew Chem Int Ed Engl Research Articles The rising demand for clean water for a growing and increasingly urban global population is one of the most urgent issues of our time. Here, we introduce the synthesis of a unique nanoscale architecture of pillar‐like Co‐CAT‐1 metal–organic framework (MOF) crystallites on gold‐coated woven stainless steel meshes with large, 50 μm apertures. These nanostructured mesh surfaces feature superhydrophilic and underwater superoleophobic wetting properties, allowing for gravity‐driven, highly efficient oil–water separation featuring water fluxes of up to nearly one million L m(−2) h(−1). Water physisorption experiments reveal the hydrophilic nature of Co‐CAT‐1 with a total water vapor uptake at room temperature of 470 cm(3) g(−1). Semiempirical molecular orbital calculations shed light on water affinity of the inner and outer pore surfaces. The MOF‐based membranes enable high separation efficiencies for a number of liquids tested, including the notorious water pollutant, crude oil, affording chemical oxygen demand (COD) concentrations below 25 mg L(−1) of the effluent. Our results demonstrate the great impact of suitable nanoscale surface architectures as a means of encoding on‐surface extreme wetting properties, yielding energy‐efficient water‐selective large‐aperture membranes. John Wiley and Sons Inc. 2021-01-18 2021-03-01 /pmc/articles/PMC7986099/ /pubmed/33015946 http://dx.doi.org/10.1002/anie.202012428 Text en © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research Articles
Mähringer, Andre
Hennemann, Matthias
Clark, Timothy
Bein, Thomas
Medina, Dana D.
Energy Efficient Ultrahigh Flux Separation of Oily Pollutants from Water with Superhydrophilic Nanoscale Metal–Organic Framework Architectures
title Energy Efficient Ultrahigh Flux Separation of Oily Pollutants from Water with Superhydrophilic Nanoscale Metal–Organic Framework Architectures
title_full Energy Efficient Ultrahigh Flux Separation of Oily Pollutants from Water with Superhydrophilic Nanoscale Metal–Organic Framework Architectures
title_fullStr Energy Efficient Ultrahigh Flux Separation of Oily Pollutants from Water with Superhydrophilic Nanoscale Metal–Organic Framework Architectures
title_full_unstemmed Energy Efficient Ultrahigh Flux Separation of Oily Pollutants from Water with Superhydrophilic Nanoscale Metal–Organic Framework Architectures
title_short Energy Efficient Ultrahigh Flux Separation of Oily Pollutants from Water with Superhydrophilic Nanoscale Metal–Organic Framework Architectures
title_sort energy efficient ultrahigh flux separation of oily pollutants from water with superhydrophilic nanoscale metal–organic framework architectures
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986099/
https://www.ncbi.nlm.nih.gov/pubmed/33015946
http://dx.doi.org/10.1002/anie.202012428
work_keys_str_mv AT mahringerandre energyefficientultrahighfluxseparationofoilypollutantsfromwaterwithsuperhydrophilicnanoscalemetalorganicframeworkarchitectures
AT hennemannmatthias energyefficientultrahighfluxseparationofoilypollutantsfromwaterwithsuperhydrophilicnanoscalemetalorganicframeworkarchitectures
AT clarktimothy energyefficientultrahighfluxseparationofoilypollutantsfromwaterwithsuperhydrophilicnanoscalemetalorganicframeworkarchitectures
AT beinthomas energyefficientultrahighfluxseparationofoilypollutantsfromwaterwithsuperhydrophilicnanoscalemetalorganicframeworkarchitectures
AT medinadanad energyefficientultrahighfluxseparationofoilypollutantsfromwaterwithsuperhydrophilicnanoscalemetalorganicframeworkarchitectures