Cargando…

Evolutionary divergence of potential drought adaptations between two subspecies of an annual plant: Are trait combinations facilitated, independent, or constrained?

PREMISE: Whether drought‐adaptation mechanisms tend to evolve together, evolve independently, or evolve constrained by genetic architecture is incompletely resolved, particularly for water‐relations traits besides gas exchange. We addressed this issue in two subspecies of Clarkia xantiana (Onagracea...

Descripción completa

Detalles Bibliográficos
Autores principales: Burnette, Timothy E., Eckhart, Vincent M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986167/
https://www.ncbi.nlm.nih.gov/pubmed/33524185
http://dx.doi.org/10.1002/ajb2.1607
_version_ 1783668390752157696
author Burnette, Timothy E.
Eckhart, Vincent M.
author_facet Burnette, Timothy E.
Eckhart, Vincent M.
author_sort Burnette, Timothy E.
collection PubMed
description PREMISE: Whether drought‐adaptation mechanisms tend to evolve together, evolve independently, or evolve constrained by genetic architecture is incompletely resolved, particularly for water‐relations traits besides gas exchange. We addressed this issue in two subspecies of Clarkia xantiana (Onagraceae), California winter annuals that separated approximately 65,000 years ago and are adapted, partly by differences in flowering time, to native ranges differing in precipitation. METHODS: In these subspecies and in recombinant inbred lines (RILs) from a cross between them, we scored traits related to drought adaptation (timing of seed germination and of flowering, succulence, pressure–volume curve variables) in common environments. RESULTS: The subspecies native to more arid environments (parviflora) exhibited slower seed germination in saturated conditions, earlier flowering, and greater succulence, likely indicating superior drought avoidance, drought escape, and dehydration resistance via water storage. The other subspecies (xantiana) had lower osmotic potential at full turgor and lower water potential at turgor loss, implying superior dehydration tolerance. Genetic correlations among RILs suggest facilitated evolution of some trait combinations and independence of others. Where genetic correlations exist, subspecies differences fell along them, with the exception of differences in succulence and turgor loss point. In that case, subspecies difference overcame genetic correlations, possibly reflecting strong selection and/or antagonistic genetic correlations with other traits. CONCLUSIONS: Clarkia xantiana subspecies’ differ in multiple mechanisms of drought adaptation. Genetic architecture generally does not seem to have constrained the evolution of these mechanisms, and it may have facilitated the evolution of some of trait combinations.
format Online
Article
Text
id pubmed-7986167
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-79861672021-03-25 Evolutionary divergence of potential drought adaptations between two subspecies of an annual plant: Are trait combinations facilitated, independent, or constrained? Burnette, Timothy E. Eckhart, Vincent M. Am J Bot RESEARCH ARTICLES PREMISE: Whether drought‐adaptation mechanisms tend to evolve together, evolve independently, or evolve constrained by genetic architecture is incompletely resolved, particularly for water‐relations traits besides gas exchange. We addressed this issue in two subspecies of Clarkia xantiana (Onagraceae), California winter annuals that separated approximately 65,000 years ago and are adapted, partly by differences in flowering time, to native ranges differing in precipitation. METHODS: In these subspecies and in recombinant inbred lines (RILs) from a cross between them, we scored traits related to drought adaptation (timing of seed germination and of flowering, succulence, pressure–volume curve variables) in common environments. RESULTS: The subspecies native to more arid environments (parviflora) exhibited slower seed germination in saturated conditions, earlier flowering, and greater succulence, likely indicating superior drought avoidance, drought escape, and dehydration resistance via water storage. The other subspecies (xantiana) had lower osmotic potential at full turgor and lower water potential at turgor loss, implying superior dehydration tolerance. Genetic correlations among RILs suggest facilitated evolution of some trait combinations and independence of others. Where genetic correlations exist, subspecies differences fell along them, with the exception of differences in succulence and turgor loss point. In that case, subspecies difference overcame genetic correlations, possibly reflecting strong selection and/or antagonistic genetic correlations with other traits. CONCLUSIONS: Clarkia xantiana subspecies’ differ in multiple mechanisms of drought adaptation. Genetic architecture generally does not seem to have constrained the evolution of these mechanisms, and it may have facilitated the evolution of some of trait combinations. John Wiley and Sons Inc. 2021-02-01 2021-02 /pmc/articles/PMC7986167/ /pubmed/33524185 http://dx.doi.org/10.1002/ajb2.1607 Text en © 2021 Burnette et al. American Journal of Botany published by Wiley Periodicals LLC on behalf of Botanical Society of America. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle RESEARCH ARTICLES
Burnette, Timothy E.
Eckhart, Vincent M.
Evolutionary divergence of potential drought adaptations between two subspecies of an annual plant: Are trait combinations facilitated, independent, or constrained?
title Evolutionary divergence of potential drought adaptations between two subspecies of an annual plant: Are trait combinations facilitated, independent, or constrained?
title_full Evolutionary divergence of potential drought adaptations between two subspecies of an annual plant: Are trait combinations facilitated, independent, or constrained?
title_fullStr Evolutionary divergence of potential drought adaptations between two subspecies of an annual plant: Are trait combinations facilitated, independent, or constrained?
title_full_unstemmed Evolutionary divergence of potential drought adaptations between two subspecies of an annual plant: Are trait combinations facilitated, independent, or constrained?
title_short Evolutionary divergence of potential drought adaptations between two subspecies of an annual plant: Are trait combinations facilitated, independent, or constrained?
title_sort evolutionary divergence of potential drought adaptations between two subspecies of an annual plant: are trait combinations facilitated, independent, or constrained?
topic RESEARCH ARTICLES
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986167/
https://www.ncbi.nlm.nih.gov/pubmed/33524185
http://dx.doi.org/10.1002/ajb2.1607
work_keys_str_mv AT burnettetimothye evolutionarydivergenceofpotentialdroughtadaptationsbetweentwosubspeciesofanannualplantaretraitcombinationsfacilitatedindependentorconstrained
AT eckhartvincentm evolutionarydivergenceofpotentialdroughtadaptationsbetweentwosubspeciesofanannualplantaretraitcombinationsfacilitatedindependentorconstrained