Cargando…
Electrooxidative Rhodium‐Catalyzed [5+2] Annulations via C−H/O−H Activations
Electrooxidative annulations involving mild transition metal‐catalyzed C−H activation have emerged as a transformative strategy for the rapid construction of five‐ and six‐membered heterocycles. In contrast, we herein describe the first electrochemical metal‐catalyzed [5+2] cycloadditions to assembl...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986427/ https://www.ncbi.nlm.nih.gov/pubmed/33471952 http://dx.doi.org/10.1002/anie.202016895 |
Sumario: | Electrooxidative annulations involving mild transition metal‐catalyzed C−H activation have emerged as a transformative strategy for the rapid construction of five‐ and six‐membered heterocycles. In contrast, we herein describe the first electrochemical metal‐catalyzed [5+2] cycloadditions to assemble valuable seven‐membered benzoxepine skeletons by C−H/O−H activation. The efficient alkyne annulation featured ample substrate scope, using electricity as the only oxidant. Mechanistic studies provided strong support for a rhodium(III/I) regime, involving a benzoxepine‐coordinated rhodium(I) sandwich complex as the catalyst resting state, which was re‐oxidized to rhodium(III) by anodic oxidation. |
---|