Cargando…
Interrupted time series analysis using autoregressive integrated moving average (ARIMA) models: a guide for evaluating large-scale health interventions
BACKGROUND: Interrupted time series analysis is increasingly used to evaluate the impact of large-scale health interventions. While segmented regression is a common approach, it is not always adequate, especially in the presence of seasonality and autocorrelation. An Autoregressive Integrated Moving...
Autores principales: | Schaffer, Andrea L., Dobbins, Timothy A., Pearson, Sallie-Anne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986567/ https://www.ncbi.nlm.nih.gov/pubmed/33752604 http://dx.doi.org/10.1186/s12874-021-01235-8 |
Ejemplares similares
-
Autoregressive Integrated Moving Average (ARIMA) Modeling of Time Series of Local Telephone Triage Data for Syndromic Surveillance
por: Widerström, Micael, et al.
Publicado: (2014) -
Forecasting New Tuberculosis Cases in Malaysia: A Time-Series Study Using the Autoregressive Integrated Moving Average (ARIMA) Model
por: Ab Rashid, Mohd Ariff, et al.
Publicado: (2023) -
Assessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza A virus frequency in swine in Ontario, Canada
por: Petukhova, Tatiana, et al.
Publicado: (2018) -
Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends
por: ArunKumar, K.E., et al.
Publicado: (2022) -
Prediction of the COVID-19 Pandemic for the Top 15 Affected Countries: Advanced Autoregressive Integrated Moving Average (ARIMA) Model
por: Singh, Ram Kumar, et al.
Publicado: (2020)