Cargando…
MeSHHeading2vec: a new method for representing MeSH headings as vectors based on graph embedding algorithm
Effectively representing Medical Subject Headings (MeSH) headings (terms) such as disease and drug as discriminative vectors could greatly improve the performance of downstream computational prediction models. However, these terms are often abstract and difficult to quantify. In this paper, we conve...
Autores principales: | Guo, Zhen-Hao, You, Zhu-Hong, Huang, De-Shuang, Yi, Hai-Cheng, Zheng, Kai, Chen, Zhan-Heng, Wang, Yan-Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986599/ https://www.ncbi.nlm.nih.gov/pubmed/32232320 http://dx.doi.org/10.1093/bib/bbaa037 |
Ejemplares similares
-
BioWordVec, improving biomedical word embeddings with subword information and MeSH
por: Zhang, Yijia, et al.
Publicado: (2019) -
Ensembles of knowledge graph embedding models improve predictions for drug discovery
por: Rivas-Barragan, Daniel, et al.
Publicado: (2022) -
LSTM-PHV: prediction of human-virus protein–protein interactions by LSTM with word2vec
por: Tsukiyama, Sho, et al.
Publicado: (2021) -
scHiMe: predicting single-cell DNA methylation levels based on single-cell Hi-C data
por: Zhu, Hao, et al.
Publicado: (2023) -
An inductive graph neural network model for compound–protein interaction prediction based on a homogeneous graph
por: Wan, Xiaozhe, et al.
Publicado: (2022)