Cargando…
Prenatal exposure to atrazine induces cryptorchidism and hypospadias in F1 male mouse offspring
The main objective of the present study was to determine whether prenatal exposure to atrazine could affect testicle descent and penile masculinization. Atrazine has been demonstrated with a variety of endocrine disrupting activities and reproductive toxicities. However, the effects of prenatal atra...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986601/ https://www.ncbi.nlm.nih.gov/pubmed/33463082 http://dx.doi.org/10.1002/bdr2.1865 |
Sumario: | The main objective of the present study was to determine whether prenatal exposure to atrazine could affect testicle descent and penile masculinization. Atrazine has been demonstrated with a variety of endocrine disrupting activities and reproductive toxicities. However, the effects of prenatal atrazine exposure on male offspring's genital malformation, such as hypospadias and cryptorchidism, remain poorly understood. In this study, pregnant ICR mice were gavaged from gestational day 12.5–16.5 with different doses of atrazine. Although no sign of systemic toxicity was observed in F1 male pups, prenatal exposure to 100 mg/kg/day atrazine affected penile morphology, urethral meatus position and descent of testis, and reduced anogenital distance and penile size in postnatal day 21 F1 male pups. The comparative study with an androgen receptor (AR) antagonist vinclozolin suggested that these effects of atrazine on male genital development may not be through antagonism of AR. The results also revealed that atrazine exposure significantly reduced maternal serum testosterone levels, decreased AR nuclear translocation, and altered the expression levels of developmental gene networks in developing penis of mice. Atrazine exposure also affected the expression of insulin‐like 3 (Insl3) and steroidogenic gene expression in developing reproductive tract. Therefore, our data indicate that prenatal atrazine exposure can induce hypospadias in F1 mice, likely through disruption of testosterone production, decreasing genomic androgen action, and then altering expression of developmental genes during sexual differentiation. Our data also suggest that prenatal atrazine exposure can induce cryptorchidism in F1 mice, possibly through down regulation of Insl3. |
---|