Cargando…
Coupled matrix–matrix and coupled tensor–matrix completion methods for predicting drug–target interactions
Predicting the interactions between drugs and targets plays an important role in the process of new drug discovery, drug repurposing (also known as drug repositioning). There is a need to develop novel and efficient prediction approaches in order to avoid the costly and laborious process of determin...
Autores principales: | Bagherian, Maryam, Kim, Renaid B, Jiang, Cheng, Sartor, Maureen A, Derksen, Harm, Najarian, Kayvan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986629/ https://www.ncbi.nlm.nih.gov/pubmed/32186716 http://dx.doi.org/10.1093/bib/bbaa025 |
Ejemplares similares
-
Machine learning approaches and databases for prediction of drug–target interaction: a survey paper
por: Bagherian, Maryam, et al.
Publicado: (2020) -
Erratum to: Machine learning approaches and databases for prediction of drug–target interaction: a survey paper
por: Bagherian, Maryam, et al.
Publicado: (2020) -
S(3)CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization
por: Choi, Dongjin, et al.
Publicado: (2019) -
Applied matrix and tensor analysis
por: Eisele, John A, et al.
Publicado: (1970) -
Weak matrix elements at strong coupling
por: Patel, A D
Publicado: (1989)