Cargando…

Genomic landscape of geographically structured colour polymorphism in a temperate marine fish

The study of phenotypic variation patterns among populations is fundamental to elucidate the drivers of evolutionary processes. Empirical evidence that supports ongoing genetic divergence associated with phenotypic variation remains very limited for marine species where larval dispersal is a common...

Descripción completa

Detalles Bibliográficos
Autores principales: Casas, Laura, Saenz‐Agudelo, Pablo, Villegas‐Ríos, David, Irigoien, Xabier, Saborido‐Rey, Fran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986630/
https://www.ncbi.nlm.nih.gov/pubmed/33455028
http://dx.doi.org/10.1111/mec.15805
Descripción
Sumario:The study of phenotypic variation patterns among populations is fundamental to elucidate the drivers of evolutionary processes. Empirical evidence that supports ongoing genetic divergence associated with phenotypic variation remains very limited for marine species where larval dispersal is a common homogenizing force. We present a genome‐wide analysis of a marine fish, Labrus bergylta, comprising 144 samples distributed from Norway to Spain, a large geographical area that harbours a gradient of phenotypic differentiation. We analysed 39,602 biallelic single nucleotide polymorphisms and found a clear latitudinal gradient of genomic differentiation strongly correlated with the variation in phenotypic morph frequencies observed across the North Atlantic. We also detected a strong association between the latitude and the number of loci that appear to be under divergent selection, which increased with differences in coloration but not with overall genetic differentiation. Our results demonstrate that strong reproductive isolation is occurring between sympatric colour morphs of L. bergylta found at the southern areas and provide important new insights into the genomic changes shaping early stages of differentiation that might precede speciation with gene flow.