Cargando…
Regression on imperfect class labels derived by unsupervised clustering
Outcome regressed on class labels identified by unsupervised clustering is custom in many applications. However, it is common to ignore the misclassification of class labels caused by the learning algorithm, which potentially leads to serious bias of the estimated effect parameters. Due to their gen...
Autores principales: | Brøndum, Rasmus Froberg, Michaelsen, Thomas Yssing, Bøgsted, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986660/ https://www.ncbi.nlm.nih.gov/pubmed/32124917 http://dx.doi.org/10.1093/bib/bbaa014 |
Ejemplares similares
-
Computationally scalable regression modeling for ultrahigh-dimensional omics data with ParProx
por: Ko, Seyoon, et al.
Publicado: (2021) -
Consensus clustering of single-cell RNA-seq data by enhancing network affinity
por: Cui, Yaxuan, et al.
Publicado: (2021) -
Chrom-Lasso: a lasso regression-based model to detect functional interactions using Hi-C data
por: Lu, Jingzhe, et al.
Publicado: (2021) -
ANPELA: analysis and performance assessment of the label-free quantification workflow for metaproteomic studies
por: Tang, Jing, et al.
Publicado: (2019) -
Investigations of sequencing data and sample type on HLA class Ia typing with different computational tools
por: Yi, Jian, et al.
Publicado: (2020)