Cargando…
PQQ‐dependent Dehydrogenase Enables One‐pot Bi‐enzymatic Enantio‐convergent Biocatalytic Amination of Racemic sec‐Allylic Alcohols
The asymmetric amination of secondary racemic allylic alcohols bears several challenges like the reactivity of the bi‐functional substrate/product as well as of the α,β‐unsaturated ketone intermediate in an oxidation‐reductive amination sequence. Heading for a biocatalytic amination cascade with a m...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986696/ https://www.ncbi.nlm.nih.gov/pubmed/33777250 http://dx.doi.org/10.1002/cctc.202001707 |
_version_ | 1783668493140361216 |
---|---|
author | Gandomkar, Somayyeh Rocha, Raquel Sorgenfrei, Frieda A. Montero, Lía Martínez Fuchs, Michael Kroutil, Wolfgang |
author_facet | Gandomkar, Somayyeh Rocha, Raquel Sorgenfrei, Frieda A. Montero, Lía Martínez Fuchs, Michael Kroutil, Wolfgang |
author_sort | Gandomkar, Somayyeh |
collection | PubMed |
description | The asymmetric amination of secondary racemic allylic alcohols bears several challenges like the reactivity of the bi‐functional substrate/product as well as of the α,β‐unsaturated ketone intermediate in an oxidation‐reductive amination sequence. Heading for a biocatalytic amination cascade with a minimal number of enzymes, an oxidation step was implemented relying on a single PQQ‐dependent dehydrogenase with low enantioselectivity. This enzyme allowed the oxidation of both enantiomers at the expense of iron(III) as oxidant. The stereoselective amination of the α,β‐unsaturated ketone intermediate was achieved with transaminases using 1‐phenylethylamine as formal reducing agent as well as nitrogen source. Choosing an appropriate transaminase, either the (R)‐ or (S)‐enantiomer was obtained in optically pure form (>98 % ee). The enantio‐convergent amination of the racemic allylic alcohols to one single allylic amine enantiomer was achieved in one pot in a sequential cascade. |
format | Online Article Text |
id | pubmed-7986696 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79866962021-03-25 PQQ‐dependent Dehydrogenase Enables One‐pot Bi‐enzymatic Enantio‐convergent Biocatalytic Amination of Racemic sec‐Allylic Alcohols Gandomkar, Somayyeh Rocha, Raquel Sorgenfrei, Frieda A. Montero, Lía Martínez Fuchs, Michael Kroutil, Wolfgang ChemCatChem Communications The asymmetric amination of secondary racemic allylic alcohols bears several challenges like the reactivity of the bi‐functional substrate/product as well as of the α,β‐unsaturated ketone intermediate in an oxidation‐reductive amination sequence. Heading for a biocatalytic amination cascade with a minimal number of enzymes, an oxidation step was implemented relying on a single PQQ‐dependent dehydrogenase with low enantioselectivity. This enzyme allowed the oxidation of both enantiomers at the expense of iron(III) as oxidant. The stereoselective amination of the α,β‐unsaturated ketone intermediate was achieved with transaminases using 1‐phenylethylamine as formal reducing agent as well as nitrogen source. Choosing an appropriate transaminase, either the (R)‐ or (S)‐enantiomer was obtained in optically pure form (>98 % ee). The enantio‐convergent amination of the racemic allylic alcohols to one single allylic amine enantiomer was achieved in one pot in a sequential cascade. John Wiley and Sons Inc. 2020-12-22 2021-03-05 /pmc/articles/PMC7986696/ /pubmed/33777250 http://dx.doi.org/10.1002/cctc.202001707 Text en © 2020 The Authors. ChemCatChem published by Wiley-VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Communications Gandomkar, Somayyeh Rocha, Raquel Sorgenfrei, Frieda A. Montero, Lía Martínez Fuchs, Michael Kroutil, Wolfgang PQQ‐dependent Dehydrogenase Enables One‐pot Bi‐enzymatic Enantio‐convergent Biocatalytic Amination of Racemic sec‐Allylic Alcohols |
title | PQQ‐dependent Dehydrogenase Enables One‐pot Bi‐enzymatic Enantio‐convergent Biocatalytic Amination of Racemic sec‐Allylic Alcohols |
title_full | PQQ‐dependent Dehydrogenase Enables One‐pot Bi‐enzymatic Enantio‐convergent Biocatalytic Amination of Racemic sec‐Allylic Alcohols |
title_fullStr | PQQ‐dependent Dehydrogenase Enables One‐pot Bi‐enzymatic Enantio‐convergent Biocatalytic Amination of Racemic sec‐Allylic Alcohols |
title_full_unstemmed | PQQ‐dependent Dehydrogenase Enables One‐pot Bi‐enzymatic Enantio‐convergent Biocatalytic Amination of Racemic sec‐Allylic Alcohols |
title_short | PQQ‐dependent Dehydrogenase Enables One‐pot Bi‐enzymatic Enantio‐convergent Biocatalytic Amination of Racemic sec‐Allylic Alcohols |
title_sort | pqq‐dependent dehydrogenase enables one‐pot bi‐enzymatic enantio‐convergent biocatalytic amination of racemic sec‐allylic alcohols |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986696/ https://www.ncbi.nlm.nih.gov/pubmed/33777250 http://dx.doi.org/10.1002/cctc.202001707 |
work_keys_str_mv | AT gandomkarsomayyeh pqqdependentdehydrogenaseenablesonepotbienzymaticenantioconvergentbiocatalyticaminationofracemicsecallylicalcohols AT rocharaquel pqqdependentdehydrogenaseenablesonepotbienzymaticenantioconvergentbiocatalyticaminationofracemicsecallylicalcohols AT sorgenfreifriedaa pqqdependentdehydrogenaseenablesonepotbienzymaticenantioconvergentbiocatalyticaminationofracemicsecallylicalcohols AT monteroliamartinez pqqdependentdehydrogenaseenablesonepotbienzymaticenantioconvergentbiocatalyticaminationofracemicsecallylicalcohols AT fuchsmichael pqqdependentdehydrogenaseenablesonepotbienzymaticenantioconvergentbiocatalyticaminationofracemicsecallylicalcohols AT kroutilwolfgang pqqdependentdehydrogenaseenablesonepotbienzymaticenantioconvergentbiocatalyticaminationofracemicsecallylicalcohols |