Cargando…

Tunable e (g) Orbital Occupancy in Heusler Compounds for Oxygen Evolution Reaction

Heusler compounds have potential in electrocatalysis because of their mechanical robustness, metallic conductivity, and wide tunability in the electronic structure and element compositions. This study reports the first application of Co(2) YZ‐type Heusler compounds as electrocatalysts for the oxygen...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Mingquan, Li, Guowei, Fu, Chenguang, Liu, Enke, Manna, Kaustuv, Budiyanto, Eko, Yang, Qun, Felser, Claudia, Tüysüz, Harun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986729/
https://www.ncbi.nlm.nih.gov/pubmed/33300643
http://dx.doi.org/10.1002/anie.202013610
Descripción
Sumario:Heusler compounds have potential in electrocatalysis because of their mechanical robustness, metallic conductivity, and wide tunability in the electronic structure and element compositions. This study reports the first application of Co(2) YZ‐type Heusler compounds as electrocatalysts for the oxygen evolution reaction (OER). A range of Co(2) YZ crystals was synthesized through the arc‐melting method and the e (g) orbital filling of Co was precisely regulated by varying Y and Z sites of the compound. A correlation between the e (g) orbital filling of reactive Co sites and OER activity was found for Co(2)MnZ compounds (Z=Ti, Al, V, and Ga), whereby higher catalytic current was achieved for e (g) orbital filling approaching unity. A similar trend of e (g) orbital filling on the reactivity of cobalt sites was also observed for other Heusler compounds (Co(2)VZ, Z=Sn and Ga). This work demonstrates proof of concept in the application of Heusler compounds as a new class of OER electrocatalysts, and the influence of the manipulation of the spin orbitals on their catalytic performance.