Cargando…
STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological Regularization
Accurate prediction of the transmission of epidemic diseases such as COVID-19 is crucial for implementing effective mitigation measures. In this work, we develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously. We construct a 3-way spatio-temporal tensor (...
Autores principales: | Kargas, Nikos, Qian, Cheng, Sidiropoulos, Nicholas D., Xiao, Cao, Glass, Lucas M., Sun, Jimeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987089/ https://www.ncbi.nlm.nih.gov/pubmed/33758769 |
Ejemplares similares
-
STAN: spatio-temporal attention network for pandemic prediction using real-world evidence
por: Gao, Junyi, et al.
Publicado: (2021) -
Spatio-Temporal Correlation Tensors Reveal Functional Structure in Human Brain
por: Ding, Zhaohua, et al.
Publicado: (2013) -
Spatio-Temporal Methods in Environmental Epidemiology
por: Shaddick, Gavin, et al.
Publicado: (2015) -
STELAR: a statistically consistent coalescent-based species tree estimation method by maximizing triplet consistency
por: Islam, Mazharul, et al.
Publicado: (2020) -
AtHKT1;1 Mediates Nernstian Sodium Channel Transport Properties in Arabidopsis Root Stelar Cells
por: Xue, Shaowu, et al.
Publicado: (2011)