Cargando…
Computing infection distributions and longitudinal evolution patterns in lung CT images
BACKGROUND: Spatial and temporal lung infection distributions of coronavirus disease 2019 (COVID-19) and their changes could reveal important patterns to better understand the disease and its time course. This paper presents a pipeline to analyze statistically these patterns by automatically segment...
Autores principales: | Gu, Dongdong, Chen, Liyun, Shan, Fei, Xia, Liming, Liu, Jun, Mo, Zhanhao, Yan, Fuhua, Song, Bin, Gao, Yaozong, Cao, Xiaohuan, Chen, Yanbo, Shao, Ying, Han, Miaofei, Wang, Bin, Liu, Guocai, Wang, Qian, Shi, Feng, Shen, Dinggang, Xue, Zhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987127/ https://www.ncbi.nlm.nih.gov/pubmed/33757431 http://dx.doi.org/10.1186/s12880-021-00588-2 |
Ejemplares similares
-
Hypergraph learning for identification of COVID-19 with CT imaging
por: Di, Donglin, et al.
Publicado: (2021) -
Lung volume reduction and infection localization revealed in Big data CT imaging of COVID-19
por: Shi, Feng, et al.
Publicado: (2021) -
Joint prediction and time estimation of COVID-19 developing severe symptoms using chest CT scan
por: Zhu, Xiaofeng, et al.
Publicado: (2021) -
Deep learning empowered volume delineation of whole-body organs-at-risk for accelerated radiotherapy
por: Shi, Feng, et al.
Publicado: (2022) -
Detection of Incidental Esophageal Cancers on Chest CT by Deep Learning
por: Sui, He, et al.
Publicado: (2021)