Cargando…
The Random Forest Model Has the Best Accuracy Among the Four Pressure Ulcer Prediction Models Using Machine Learning Algorithms
PURPOSE: Build machine learning models for predicting pressure ulcer nursing adverse event, and find an optimal model that predicts the occurrence of pressure ulcer accurately. PATIENTS AND METHODS: Retrospectively enrolled 5814 patients, of which 1673 suffer from pressure ulcer events. Support vect...
Autores principales: | Song, Jie, Gao, Yuan, Yin, Pengbin, Li, Yi, Li, Yang, Zhang, Jie, Su, Qingqing, Fu, Xiaojie, Pi, Hongying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987326/ https://www.ncbi.nlm.nih.gov/pubmed/33776495 http://dx.doi.org/10.2147/RMHP.S297838 |
Ejemplares similares
-
A united model for diagnosing pulmonary tuberculosis with random forest and artificial neural network
por: Zhu, Qingqing, et al.
Publicado: (2023) -
Thymol has beneficial effects on the experimental model of ulcerative colitis
por: Tahmasebi, Pourya, et al.
Publicado: (2019) -
Statistical Complexity Analysis of Turing Machine tapes with Fixed Algorithmic Complexity Using the Best-Order Markov Model
por: Silva, Jorge M., et al.
Publicado: (2020) -
Predictive models for endoscopic disease activity in patients with ulcerative colitis: Practical machine learning-based modeling and interpretation
por: Li, Xiaojun, et al.
Publicado: (2022) -
Prediction model of stress ulcer after laparoscopic surgery for colorectal cancer established by machine learning algorithm
por: Yu, Dong-Mei, et al.
Publicado: (2023)