Cargando…
Footballer Action Tracking and Intervention Using Deep Learning Algorithm
Fédération Internationale de Football Association is the governing body of the football world cup. The international tournament of football requires extensive training of all football players and athletes. In the training process of footballers, players and coaches recognize the training actions com...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987457/ https://www.ncbi.nlm.nih.gov/pubmed/33815728 http://dx.doi.org/10.1155/2021/5518806 |
_version_ | 1783668615112818688 |
---|---|
author | Yang, Guanghui Wang, Lijun Xu, Xiaofeng Xia, Jixiang |
author_facet | Yang, Guanghui Wang, Lijun Xu, Xiaofeng Xia, Jixiang |
author_sort | Yang, Guanghui |
collection | PubMed |
description | Fédération Internationale de Football Association is the governing body of the football world cup. The international tournament of football requires extensive training of all football players and athletes. In the training process of footballers, players and coaches recognize the training actions completed by footballers. The training actions are compared with standard actions, calculate losses, and scientifically intervene in the training processes. This intervention is important for better results during the training sessions. Coaches must determine and confirm that every action performed by the footballers meets the minimum standards. It is because the actions of individual players are performed quickly; as a result, the coach's eye may not produce accurate results as human activities are prone to errors. Therefore, this paper designs and develops a footballer's motion and gesture recognition and intervention algorithm using a convolutional neural network (CNN). In this proposed algorithm, initially, texture features and HSV features of the footballer's posture image are extracted and then a dual-channel CNN is constructed. Each characteristic is extracted separately, and the output of the dual-channel network is combined. Finally, the obtained results are passed from a fully connected CNN to estimate and construct the posture image of the footballer. This article performs experimental testing and comparative analysis on a wide range of data and also conducts ablation studies. The experimental work shows that the proposed algorithm achieves better performance results. |
format | Online Article Text |
id | pubmed-7987457 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-79874572021-04-02 Footballer Action Tracking and Intervention Using Deep Learning Algorithm Yang, Guanghui Wang, Lijun Xu, Xiaofeng Xia, Jixiang J Healthc Eng Research Article Fédération Internationale de Football Association is the governing body of the football world cup. The international tournament of football requires extensive training of all football players and athletes. In the training process of footballers, players and coaches recognize the training actions completed by footballers. The training actions are compared with standard actions, calculate losses, and scientifically intervene in the training processes. This intervention is important for better results during the training sessions. Coaches must determine and confirm that every action performed by the footballers meets the minimum standards. It is because the actions of individual players are performed quickly; as a result, the coach's eye may not produce accurate results as human activities are prone to errors. Therefore, this paper designs and develops a footballer's motion and gesture recognition and intervention algorithm using a convolutional neural network (CNN). In this proposed algorithm, initially, texture features and HSV features of the footballer's posture image are extracted and then a dual-channel CNN is constructed. Each characteristic is extracted separately, and the output of the dual-channel network is combined. Finally, the obtained results are passed from a fully connected CNN to estimate and construct the posture image of the footballer. This article performs experimental testing and comparative analysis on a wide range of data and also conducts ablation studies. The experimental work shows that the proposed algorithm achieves better performance results. Hindawi 2021-03-15 /pmc/articles/PMC7987457/ /pubmed/33815728 http://dx.doi.org/10.1155/2021/5518806 Text en Copyright © 2021 Guanghui Yang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yang, Guanghui Wang, Lijun Xu, Xiaofeng Xia, Jixiang Footballer Action Tracking and Intervention Using Deep Learning Algorithm |
title | Footballer Action Tracking and Intervention Using Deep Learning Algorithm |
title_full | Footballer Action Tracking and Intervention Using Deep Learning Algorithm |
title_fullStr | Footballer Action Tracking and Intervention Using Deep Learning Algorithm |
title_full_unstemmed | Footballer Action Tracking and Intervention Using Deep Learning Algorithm |
title_short | Footballer Action Tracking and Intervention Using Deep Learning Algorithm |
title_sort | footballer action tracking and intervention using deep learning algorithm |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987457/ https://www.ncbi.nlm.nih.gov/pubmed/33815728 http://dx.doi.org/10.1155/2021/5518806 |
work_keys_str_mv | AT yangguanghui footballeractiontrackingandinterventionusingdeeplearningalgorithm AT wanglijun footballeractiontrackingandinterventionusingdeeplearningalgorithm AT xuxiaofeng footballeractiontrackingandinterventionusingdeeplearningalgorithm AT xiajixiang footballeractiontrackingandinterventionusingdeeplearningalgorithm |