Cargando…

Hybrid volumetric modulated arc therapy for hypofractionated radiotherapy of breast cancer: a treatment planning study

PURPOSE: This study aims to evaluate the best possible practice using hybrid volumetric modulated arc therapy (H-VMAT) for hypofractionated radiation therapy of breast cancer. Different combinations of H‑VMAT—a combination of three-dimensional radiotherapy (3D-CRT) and VMAT—were analyzed regarding p...

Descripción completa

Detalles Bibliográficos
Autores principales: Venjakob, Alexander, Oertel, Michael, Hering, Dominik Alexander, Moustakis, Christos, Haverkamp, Uwe, Eich, Hans Theodor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987622/
https://www.ncbi.nlm.nih.gov/pubmed/33068126
http://dx.doi.org/10.1007/s00066-020-01696-8
Descripción
Sumario:PURPOSE: This study aims to evaluate the best possible practice using hybrid volumetric modulated arc therapy (H-VMAT) for hypofractionated radiation therapy of breast cancer. Different combinations of H‑VMAT—a combination of three-dimensional radiotherapy (3D-CRT) and VMAT—were analyzed regarding planning target volume (PTV), dose coverage, and exposure to organs at risk (OAR). METHODS: Planning computed tomography scans were acquired in deep-inspiration breath-hold. A total of 520 treatment plans were calculated and evaluated for 40 patients, comprising six different H‑VMAT plans and a 3D-CRT plan as reference. H‑VMAT plans consisted of two treatment plans including 3D-CRT and VMAT. During H‑VMAT planning, the use of hard wedge filters (HWF) and beam energies were varied. The reference plans were planned with mixed beam energies and the inclusion/omission of HWF. RESULTS: Compared to the reference treatment plans, all H‑VMAT plans showed consistently better PTV dose coverage, conformity, and homogeneity. Additionally, OAR protection was significantly improved with several H‑VMAT combinations (p < 0.05). The comparison of different H‑VMAT combinations showed that inclusion of HWF in the base plan had a negative impact on PTV dose coverage, conformity, and OAR exposure. It also increased the planned monitor units and beam-on time. Advantages of using lower beam energies (6-MV photons) in both the base plan and in the VMAT supplementary dose were observed. CONCLUSION: The H‑VMAT technique is an effective possibility for generating homogenous and conformal dose distributions. With the right choice of H‑VMAT combination, superior OAR protection is achieved compared to 3D-CRT.