Cargando…

Catalpol Protects Against High Glucose-Induced Bone Loss by Regulating Osteoblast Function

Objective: The overall objective of this study was to investigate the effects of catalpol on bone remodeling of diabetic osteoporosis by regulating osteoblast differentiation and migration. Method: Using a murine model of diabetic osteoporosis, to detect the protective effects of catalpol on bone lo...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Lu, Du, Wei, Zhao, Dandan, Ji, Xueyan, Huang, Yanfei, Pang, Yong, Guo, Kaijin, Yin, Xiaoxing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987667/
https://www.ncbi.nlm.nih.gov/pubmed/33776769
http://dx.doi.org/10.3389/fphar.2021.626621
Descripción
Sumario:Objective: The overall objective of this study was to investigate the effects of catalpol on bone remodeling of diabetic osteoporosis by regulating osteoblast differentiation and migration. Method: Using a murine model of diabetic osteoporosis, to detect the protective effects of catalpol on bone loss, architectural deterioration of trabecular bone and bone metabolism biomarkers were tested. A model of MC3T3-E1 cells was established by treatment with high glucose; the regulatory role of catalpol in the differentiation and migration was tested by Western blot, ALP staining, and Alizarin Red staining. Results: Catalpol treatment markedly ameliorated trabecular bone deterioration by reducing degenerative changes of the trabecular structure by improving the bone formation marker levels of ALP, osteopontin, type I collagen, and osteocalcin, as well as the level of OPG/RANKL. Catalpol enhanced cell motility and scattering following gap formation of MC3T3-E1 cells. Conclusion: The results indicated that catalpol exhibits a protective effect against diabetic osteoporosis by regulating the differentiation and migration of osteoblast.