Cargando…
Novel Insights Linking lncRNAs and Metabolism With Implications for Cardiac Regeneration
Heart disease is the leading cause of mortality in developed countries. The associated pathology is typically characterized by the loss of cardiomyocytes that leads, eventually, to heart failure. Although conventional treatments exist, novel regenerative procedures are warranted for improving cardia...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987814/ https://www.ncbi.nlm.nih.gov/pubmed/33776783 http://dx.doi.org/10.3389/fphys.2021.586927 |
Sumario: | Heart disease is the leading cause of mortality in developed countries. The associated pathology is typically characterized by the loss of cardiomyocytes that leads, eventually, to heart failure. Although conventional treatments exist, novel regenerative procedures are warranted for improving cardiac regeneration and patients well fare. Whereas following injury the capacity for regeneration of adult mammalian heart is limited, the neonatal heart is capable of substantial regeneration but this capacity is lost at postnatal stages. Interestingly, this is accompanied by a shift in the metabolic pathways and energetic fuels preferentially used by cardiomyocytes from embryonic glucose-driven anaerobic glycolysis to adult oxidation of substrates in the mitochondria. Apart from energetic sources, metabolites are emerging as key regulators of gene expression and epigenetic programs which could impact cardiac regeneration. Long non-coding RNAs (lncRNAs) are known master regulators of cellular and organismal carbohydrate and lipid metabolism and play multifaceted functions in the cardiovascular system. Still, our understanding of the metabolic determinants and pathways that can promote cardiac regeneration in the injured hearth remains limited. Here, we will discuss the emerging concepts that provide evidence for a molecular interplay between lncRNAs and metabolic signaling in cardiovascular function and whether exploiting this axis could provide ground for improved regenerative strategies in the heart. |
---|