Cargando…
Case Report: Bayesian Statistical Inference of Experimental Parameters via Biomolecular Simulations: Atomic Force Microscopy
The atomic force microscopy (AFM) is a powerful tool for imaging structures of molecules bound on surfaces. To gain high-resolution structural information, one often superimposes structure models on the measured images. Motivated by high flexibility of biomolecules, we previously developed a flexibl...
Autores principales: | Fuchigami, Sotaro, Niina, Toru, Takada, Shoji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987833/ https://www.ncbi.nlm.nih.gov/pubmed/33778008 http://dx.doi.org/10.3389/fmolb.2021.636940 |
Ejemplares similares
-
Inferring Conformational State of Myosin Motor in an Atomic Force Microscopy Image via Flexible Fitting Molecular Simulations
por: Fuchigami, Sotaro, et al.
Publicado: (2022) -
Rigid-body fitting to atomic force microscopy images for inferring probe shape and biomolecular structure
por: Niina, Toru, et al.
Publicado: (2021) -
End-to-end differentiable blind tip reconstruction for noisy atomic force microscopy images
por: Matsunaga, Yasuhiro, et al.
Publicado: (2023) -
Bayesian Modeling of Biomolecular Assemblies with Cryo-EM Maps
por: Habeck, Michael
Publicado: (2017) -
Editorial: Machine Learning in Biomolecular Simulations
por: Verkhivker, Gennady, et al.
Publicado: (2019)